首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the pairing symmetry of the Kondo-Heisenberg model on triangular lattice, which is believed to capture the core competition of Kondo screening and local magnetic exchange interaction in heavy electron compounds. On the dominant background of the heavy fermion state, the introduction of the Heisenberg antiferromagnetic interaction (J H ) leads to superconducting pairing instability. Depending on the strength of the interactions, it is found that the pairing symmetry favours an extended s-wave for small J H and high conduction electron density but a chiral \(d_{x^2 - y^2 } + id_{xy}\)-wave for large J H and low conduction electron density, which provides a phase diagram of pairing symmetry from the calculations of the ground-state energy. The transition between these two pairing symmetries is found to be first-order. Furthermore, we also analyze the phase diagram from the pairing strengths and find that the phase diagram obtained is qualitatively consistent with that based on the ground-state energy. In addition, we propose an effective single-band BCS Hamiltonian, which is able to describe the low-energy thermodynamic behaviors of the heavy fermion superconducting states. These results further deepen the understanding of the antiferromagnetic interaction which results in a geometric frustration for the model studied. Our work may provide a possible scenario to understand the pairing symmetry of the heavy fermion superconductivity, which is one of active issues in very recent years.  相似文献   

2.
We propose potential geometry for fabrication of the graphite sheets with atomically smooth edges. For such sheets with Bernal stacking, the electron–electron interaction and topology should cause sufficiently high density of states resulting in the high temperature of either spin ordering or superconducting pairing.  相似文献   

3.
We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.  相似文献   

4.
We propose a model of electron pairing via spin fluctuations in doped insulators. The bare states for the superconducting condensate correspond to impurity bands in the original band gap of the undoped material. We obtain a complete set of equations for the superconducting state. We show that fermion pairing in impurity bands of extended states is possible, and thus so is superconductivity, if localized spin-0 bosons are produced. The latter are necessarily accompanied by localized spin-1 bosons, which are responsible for the relationship between singlet and triplet pairing channels of quasiparticles. Zh. éksp. Teor. Fiz. 114, 1765–1784 (November 1998)  相似文献   

5.
We solve the attractive Hubbard model for arbitrary interaction strengths within dynamical mean-field theory. We compute the transition temperature for superconductivity and analyze electron pairing in the normal phase. The normal state is a Fermi liquid at weak coupling and a non-Fermi-liquid state with a spin gap at strong coupling. Away from half filling, the quasiparticle weight vanishes discontinuously at the transition between the two normal states.  相似文献   

6.
We argue that Bjerrum's approach to ion pairing is inappropriate for the size-asymmetric primitive model in the neighborhood of its critical point, and propose a new approach based on the Stillinger-Lovett pairing procedure. The new approach recursively scales up the ion size until linear approximations are suitable for analyzing such a model. To locate the critical point, a residual van der Waals interaction between pairs is added, with an energy cutoff adjusted to match the critical temperature of the restricted primitive model. The locations and downward trends of T(c) and rho(c) with asymmetry are found to compare favorably with simulations.  相似文献   

7.
With a BCS interaction, the free energy for usual BCS pairing of electrons but in the presence of antiferromagnetism is shown to be lower than for a different pairing scheme where pairs are formed from electron eigenstates of the antiferromagnet. In both pairing schemes, super-conductivity in the presence of antiferromagnetism is always a mixture of spin-singlet-even-parity-orbital and spin-triplet-odd-parity-orbital electron pairs.  相似文献   

8.
We introduce an effective low-energy pairing model for Fe-based superconductors with s- and d-wave interaction components and a small number of input parameters and use it to study the doping evolution of the symmetry and the structure of the superconducting gap. We argue that the model describes the entire variety of pairing states found so far in the Fe-based superconductors and allows one to understand the mechanism of the attraction in s(±) and d(x(2)-y(2)) channels, the competition between s- and d-wave solutions, and the origin of superconductivity in heavily doped systems, when only electron or only hole pockets are present.  相似文献   

9.
BCS Superconductivity of Dirac electrons in graphene layers   总被引:2,自引:0,他引:2  
Possible superconductivity of electrons with the Dirac spectrum is analyzed using the BCS model. We calculate the critical temperature, the superconducting energy gap, and the supercurrent as functions of the doping level and of the pairing interaction strength. Zero doping is characterized by the existence of a quantum critical point such that the critical temperature vanishes below some finite value of the interaction strength. However, the critical temperature remains finite for any nonzero electron or hole doping level when the Fermi energy is shifted away from the Dirac point. As distinct from usual superconductors, the supercurrent density is not proportional to the number of electrons but is strongly decreased due to the presence of the Dirac point.  相似文献   

10.
11.
We propose a simple model of the electron spectrum of a two-dimensional system with hot sections on the Fermi surface that significantly transforms the spectral density (pseudogap) in these sections. Using this model, we set up a Ginzburg-Landau expansion for s and d type Cooper pairing and analyze the effect of the pseudogap in the electron spectrum on the main properties of a superconductor. Zh. éksp. Teor. Fiz. 115, 632–648 (February 1999)  相似文献   

12.
We find that the pairing correlations on the usual t-U Hubbard ladder are significantly enhanced by the addition of a nearest-neighbor exchange interaction J. Likewise, these correlations are also enhanced for the t-J model when the on-site Coulomb interaction is reduced from infinity. Moreover, the pairing correlations are larger on a t-U-J ladder than on a t-J(eff) ladder in which J(eff) has been adjusted so that the two models have the same spin gap at half filling. This enhancement of the pairing correlations is associated with an increase in the pair-binding energy and the pair mobility in the t-U-J model and points to the importance of the charge-transfer nature of the cuprate systems.  相似文献   

13.
本文在原子核壳模型框架下基于唯象相互作用(对力加四极力)研究sd壳和pf壳的偶偶核低激发集体态。在提取了USDB和GXPF1相互作用的单粒子能量和单极相互作用的基础上,我们用一套统一参数计算重现了球形核和形变核的低激发谱;将对相互作用中的单极成分扣除后可以得到较好的结合能计算结果。同位旋标量的对相互作用对计算结果影响不大。单极相互作用在经验质子—中子相互作用、原子核对称能和Wigner能中产生重要贡献。  相似文献   

14.
We find an integrable generalization of the BCS model with nonuniform Coulomb and pairing interaction. The Hamiltonian is integrable by construction since it is a functional of commuting operators; these operators, which therefore are constants of motion of the model, contain the anisotropic Gaudin Hamiltonians. The exact solution is obtained diagonalizing them by means of Bethe ansatz. Uniform pairing and Coulomb interaction are obtained as the "isotropic limit" of the Gaudin Hamiltonians. We discuss possible applications of this model to a single grain and to a system of few interacting grains.  相似文献   

15.
A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.  相似文献   

16.
The effect of time-odd fields of Skyrme interaction on neutron odd-even mass differences is studied in the framework of axially deformed Skyrme Hartree-Fock(DSHF)+BCS model. To this end, we take into account both the time-even and time-odd fields to calculate the one-neutron and two-neutron separation energies and pairing gaps of semi-magic Ca, Ni, and Sn isotopic chains. In the calculations, a surface-type pairing interaction(IS pairing) and an isospin dependent contact pairing interaction(IS+IV pairing)are adopted on top of Skyrme interactions SLy4, SLy6 and Sk M*, respectively. We find that the time-odd fields have in general small effects on pairing gaps, but achieve better agreement with experimental data using SLy4 and Sly6 interactions, respectively.It is also shown that the calculations with IS+IV pairing reproduce the one-neutron separation energies of Sn isotopes better than those with the IS pairing interaction when the contributions of the time-odd fields are included.  相似文献   

17.
Based on the random phase approximation calculation in two-orbital honeycomb lattice model, we investigate the pairing symmetry of Ni-based transition-metal trichalcogenides by electron doping access to type-II van Hove singularities (vHs). We find that chiral even-parity d + id-wave (Eg) state is suppressed by odd-parity p + ip-wave (Eu) state when electron doping approaches the type-II vHs. The type-II vHs peak in density of states (DOS) enables to strengthen the ferromagnetic fluctuation, which is responsible for triplet pairing. The competition between antiferromagnetic and ferromagnetic fluctuation results in pairing phase transition from singlet to triplet pairing. The Ni-based transitionmetal trichalcogenides provide a promising platform to unconventional superconductor emerging from electronic DOS.  相似文献   

18.
配对对称性与带间作用   总被引:1,自引:0,他引:1       下载免费PDF全文
曹天德  徐丽娜 《物理学报》2005,54(3):1406-1409
研究d p模型的超导性质.可出现d p配对占主导的情形,配对对称性取决于CuO2面内空穴作用的各向异性,可以是纯d波配对,也可以是纯s波配对.CuO2面内各向排斥作用不能导致空穴配对.欠掺杂区域可以出现“预配对”.当库伯对是局域的则不能根据配对函数求超导临界温度.空穴的退局域以及配对参量对称性的演化也能得到理解. 关键词: d波对称性 d p配对 超导电性  相似文献   

19.
《Nuclear Physics A》1986,449(2):331-353
The neutron and proton pairing gaps were recently found to have a global dependence on neutron excess. We investigate whether the couplings necessary to obtain this behaviour can be provided by a mean field associated with a Skyrme-type plus usual pairing effective interaction. The parameters of this effective interaction are constrained by nuclear-matter properties, such as binding energy, saturation density, effective mass and values of the second derivatives of the energy with respect to the four densities (neutron and proton with spin-up and spin-down), together with the surface energy. The pairing gaps are then calculated as a function of neutron excess for various parameter sets for very large systems and for finite nuclei in the local-density approximation. We find that the empirical results cannot be reproduced by this procedure. We put forward therefore the hypothesis that, to account for this failure, the usual phenomenology of effective interactions in nuclei ought to be modified; we propose a simple residual neutron-proton interaction that can do that, yet maintains all the previous successes.  相似文献   

20.
We present an analysis of two-proton shell gaps in Sn isotopes. As theoretical tool we use self-consistent mean-field models, namely the relativistic mean-field model and the Skyrme-Hartree-Fock approach, both with two different pairing forces, a delta interaction (DI) model and a density-dependent delta interaction (DDDI). We investigate the influence of nuclear deformation as well as collective correlations and find that both effects contribute significantly. Moreover, we find a further significant dependence on the pairing force used. The inclusion of deformation plus correlation effects and the use of DDDI pairing provides agreement with the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号