首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction kinetics of a set of ruthenium nitrosyl complexes, {(X)5MNO}n, containing different coligands X (polypyridines, NH3, EDTA, pz, and py) with cysteine (excess conditions), were studied by UV-vis spectrophotometry, using stopped-flow techniques, at an appropriate pH, in the range 3-10, and T = 25 degrees C. The selection of coligands afforded a redox-potential range from -0.3 to +0.5 V (vs Ag/AgCl) for the NO+/NO bound couples. Two intermediates were detected. The first one, I1, appears in the range 410-470 nm for the different complexes and is proposed to be a 1:1 adduct, with the S atom of the cysteinate nucleophile bound to the N atom of nitrosyl. The adduct formation step of I1 is an equilibrium, and the kinetic rate constants for the formation and dissociation of the corresponding adducts were determined by studying the cysteine-concentration dependence of the formation rates. The second intermediate, I2, was detected through the decay of I1, with a maximum absorbance at ca. 380 nm. From similar kinetic results and analyses, we propose that a second cysteinate adds to I1 to form I2. By plotting ln k1(RS-) and ln k2(RS-) for the first and second adduct formation steps, respectively, against the redox potentials of the NO+/NO couples, linear free energy plots are obtained, as previously observed with OH- as a nucleophile. The addition rates for both processes increase with the nitrosyl redox potentials, and this reflects a more positive charge at the electrophilic N atom. In a third step, the I2 adducts decay to form the corresponding Ru-aqua complexes, with the release of N2O and formation of cystine, implying a two-electron process for the overall nitrosyl reduction. This is in contrast with the behavior of nitroprusside ([Fe(CN)5NO]2-; NP), which always yields the one-electron reduction product, [Fe(CN)5NO]3-, either under substoichiometric or in excess-cysteine conditions.  相似文献   

2.
The standard oxidation states of central metal atoms in C 4v nitrido ([M(N)(L)5] z ) complexes are four units higher than those in corresponding nitrosyls ([M(NO)(L)5] z ) (L=CN: z = 3−, M = Mn, Tc, Re; z = 2−, M = Fe, Ru, Os; L = NH3: z = 2+, M = Mn, Tc, Re; z = 3+, M = Fe, Ru, Os). Recent work has suggested that [Mn(NO)(CN)5]3− behaves electronically much closer to Mn(V)[b 2(xy)]2, the ground state of [Mn(N)(CN)5]3−, than to Mn(I)[b 2(xy)]2[e(xz,yz)]4. We have employed density functional theory and time-dependent density functional theory to calculate the properties of the ground states and lowest-lying excitations of [M(N)(L)5] z and [M(NO)(L)5] z . Our results show that [M(N)(L)5] z and [M(NO)(L)5] z complexes with the same z value have strikingly similar electronic structures.  相似文献   

3.
Summary On u.v. irradiation, the dinitrosyldithiocarbamato M(NO)2 (S2 CNR2 )2 (M = Mo or W) complexes are converted quantitatively into the mononitrosyl M(NO)(S2CNR2)3 complexes. The tungsten complex exhibits nonrigid behaviour at high temperatures; the activation energy for this process has been determined and compared to that of the molybdenum analogue. The M(NO)2 (MeCOCHCOMe)2 and M(NO)2 [(O)SCNR2]2 compounds have been prepared; these undergo conversion into uncharacterized nitrosyl derivatives upon irradiation. Cationic complexes of the type [M(NO)2 (MeCN)4]2+, [M(NO)2 (MeCN)3 X]+ and [M(NO)2 (MeCN)2 (MeCOCHCOMe)]+ have been prepared and their exchange with CD3CN studied. Exchange occursvia a dissociative process and is stereospecific for [M(NO)2 (MeCN)4 ]2+ (M = Mo or W) and [M(NO)2 (MeCN)3 X]+ (M = MO, X = Cl; M = W, X = Br).  相似文献   

4.
5.
The polymerization of styrene was performed with new cationic iron complexes, (Fe(N-O)2Sn)+PF6?(BF4?, CIO4?), where Sn represents solvent molecules such as CH2Cl2, THF, and MeCN. Kinetic experiments showed a first-order dependence of (Rp)0 on the monomer and iron complex concentrations. The molecular weight determinations suggested that the termination process is fast and occurs by chain transfer to monomer. An extension of this polymerization to α-methylstyrene, isobutene, tetrahydrofuran, and styrene-methylmethacrylmate system emphasized the cationic nature of the reaction.  相似文献   

6.
The air stable yellow-orange complexes of cyclobutadieneiron dicarbonyl nitrosyl hexafluorophosphate, [R4C4Fe(CO)2NO]+PF-6; R = H, CH3, Ph, were prepared by the reaction of R4C4Fe(CO)3 and nitrosonium hexafluorophosphate. These complexes undergo facile monocarbonyl substitution reactions with various Lewis bases (L) to afford products of the type [R4C4Fe(CO)(NO)L]+PF-6, R = H, L = Ph3P, Ph3As, Ph3Sb or R = Ph; L = Ph3P, Ph3As; a dicarbonyl substitution product of the type [R4C4Fe(NO)L2]+PF-6, R = Ph; L = (PhO)3P, was also isolated and characterized.  相似文献   

7.
8.
Superoxochromium(III) complexes L(H2O)CrOO2+ (L = (H2O)4 and 1,4,8,11-tetraazacyclotetradecane) oxidize hydroperoxo complexes of rhodium and cobalt in an apparent hydrogen-atom transfer process, i.e., L(H2O)CrOO2+ + L(H2O)RhOOH2+ --> L(H2O)CrOOH2+ + L(H2O)RhOO2+. All of the measured rate constants fall in a narrow range, 17-135 M-1 s-1. These values are about 2.5-3.0 times smaller in D2O, where the hydroperoxo hydrogen is replaced by deuterium, and coordinated molecules of water by D2O. The failure of the back reaction to take place in the available concentration range places the O-H bond dissociation energy in RhOO-H2+ at or=80 kJ/mol) in the driving force for the two types of reactions. A chromyl ion, CrIVaqO2+, oxidizes L(H2O)RhOOH2+ and the cobalt analogs to the corresponding superoxo complexes. The rate constants are approximately 102-fold larger than those for the oxidation by CraqOO2+. The oxidation of tert-BuOOH by CrIVaqO2+ has k = 160 M-1 s-1 and exhibits an isotope effect kBuOOH/kBuOOD = 12. Hydrogen atom transfer from H2O2 to CraqOO2+ is slow, k approximately 10-3 M-1 s-1.  相似文献   

9.
10.
Electrochemical reactions are normally initiated in solution by metal electrodes such as Pt, which are expensive and limited in supply. In this Communication, we demonstrate that an atmospheric-pressure microplasma can act as a gaseous, metal-free electrode to mediate electron-transfer reactions in aqueous solutions. Ferricyanide is reduced to ferrocyanide by plasma electrons, and the reduction rate is found to depend on discharge current. The ability to initiate and control electrochemical reactions at the plasma-liquid interface opens a new direction for electrochemistry based on interactions between gas-phase electrons and ionic solutions.  相似文献   

11.
Reaction of π-cyclopentadienylmolybdenum nitrosyl halide with CNR (R = alkyl) gives [(π-C5H5)Mo(NO)X2(CNR)] (X = Br or I), [Mo(NO)(CNR)5]X (X = I or PF6) and [Mo(NO)(CNR)4I]; treatment of [Mo(NO)(CNR)5]I with R′NH2 gives [Mo(NO)(CNR)4 {C(NHR)(NHR′)}]I or [Mo(NO)(CNR)4(NH2R′)]I (R′ = alkyl) depending on temperature.  相似文献   

12.
Summary The tetramethylthiourea (TMTU) complexes of cobalt(II) and nickel(II) halides have been studied in the solid state by electronic, i.r. and far i.r. spectroscopy and magnetochemically. The tetrahedral Co(TMTU)2X2 (X = Cl, Br, 1) and Ni(TMTU)2X2 (X = Cl, Br) complexes have normal magnetic moments, electronic spectra and crystal field parameters; Ni2 (TMTU)3I4 is diamagnetic. The cobalt complexes have normal (CoX) and (CoX) vibrational frequencies. Ni(TMTU)2Cl2 and Ni2(TMTU)3I4 have (NiX) frequencies corresponding to long or bridging Ni-X bonds, while Ni(TMTU)2Br2 has normal (NiBr) frequencies for terminal Ni-Br bonds. The (MS) frequencies are similar to those of cobalt(II) and nickel(II) complexes of other thioureas.  相似文献   

13.
The novel cyclometalated Ru(III) complex, [Ru(eta(2)-phpy)(trpy)Cl][PF(6)].toluene 1, and the [Ru-NO](6) complex, [Ru(eta(2)-phpy)(trpy)NO][PF(6)](2) 2, where trpy is 2,2': 6',2'-terpyridine and phpy is 2-phenylpyridine, have been prepared and characterized by elemental analysis, IR, (1)H NMR, and electronic absorption spectroscopies, cyclic voltammetry, and crystallography. The crystal structure of 1 showed the chloride ion trans to the sigma-bonding phenyl group of phpy and is an unusual example of a stable paramagnetic cyclometalated complex. The crystal structure of 2 shows the nitrosyl ligand trans to the sigma-bonding phenyl group of phpy. The significant distortion of the normally linear Ru-NO bond angle (167.1(4) degrees) can be largely ascribed to the strong sigma-donor properties of the phenyl group.  相似文献   

14.
Small colloidal AgI particles (particle diameter (20–50 Å) have been prepared in water and acetonitrile, and optical effects due to size quantization have been observed. Electron transfer reactions involving electron donors and electron acceptors with AgI have been studied by pulse radiolysis techniques. Both reduction and oxidation of the colloids led to transient bleaching of semiconductor absorption. The recovery of the bleaching has been attributed to corrosion processes. Electrons injected into AgI colloids produce metallic silver and hydrogen. Hydrogen evolution is catalyzed by metallic silver formation.  相似文献   

15.
16.
The aquachromyl(IV) ion, Cr(aq)O(2+), reacts with acetaldehyde and pivaldehyde by hydrogen atom abstraction and, in the presence of O(2), produces acylperoxyl radicals, RC(O)OO(*). In the next step, the radicals react with Cr(aq)OO(2+), a species accompanying Cr(aq)O(2+) in our preparations. The rate constant for the Cr(aq)OO(2+)/CH(3)C(O)OO(*) cross reaction, k(Cr) = 1.5 x 10(8) M(-1) s(-1), was determined by laser flash photolysis. The evidence points to radical coupling at the remote oxygen of Cr(aq)OO(2+), followed by elimination of O(2) and formation of CH(3)COOH and Cr(V)(aq)O(3+). The latter disproportionates and ultimately yields Cr(aq)(3+) and HCrO(4)(-). No CO(2) was detected. The Cr(aq)OO(2+)/C(CH(3))(3)C(O)OO(*) reaction yielded isobutene, CO(2), and Cr(aq)(3+), in addition to chromate. In the suggested mechanism, the transient Cr(aq)OOOO(O)CC(CH(3))(3)(2+) branches into two sets of products. The path leading to chromate resembles the CH(3)C(O)OO(*) reaction. The other products arise from an unprecedented intramolecular hydrogen transfer from the tert-butyl group to the CrO entity and elimination of CO(2) and O(2). A portion of C(CH(3))(3)C(O)OO(*) was captured by (CH(3))(3)COO(*), which was in turn generated by decarbonylation of acyl radicals and oxygenation of tert-butyl radicals so formed.  相似文献   

17.
18.
19.
The production observed in the reactions of α-ferrocenylcarbonium ions with tertiary amines do not originate from ferrocenylcarbene intermediates. Evidence is presented in support of an electron-transfer mechanism leading to α-ferrocenylcarbinyl radicals as reaction intermediates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号