首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Actin cytoskeleton has been known to control and/or be associated with chondrogenesis. Staurosporine and cytochalasin D modulate actin cytoskeleton and affect chondrogenesis. However, the underlying mechanisms for actin dynamics regulation by these agents are not known well. In the present study, we investigate the effect of staurosporine and cytochalasin D on the actin dynamics as well as possible regulatory mechanisms of actin cytoskeleton modulation. Staurosporine and cytochalasin D have different effects on actin stress fibers in that staurosporine dissolved actin stress fibers while cytochalasin D disrupted them in both stress forming cells and stress fiber-formed cells. Increase in the G-/F-actin ratio either by dissolution or disruption of actin stress fiber is critical for the chondrogenic differentiation. Cytochalasin D reduced the phosphorylation of cofilin, whereas staurosporine showed little effect on cofilin phosphorylation. Either staurosporine or cytochalasin D had little effect on the phosphorylation of myosin light chain. These results suggest that staurosporine and cytochalasin D employ different mechanisms for the regulation of actin dynamics and provide evidence that removal of actin stress fibers is crucial for the chondrogenic differentiation.  相似文献   

2.
Osmotically controlled and oral drug delivery systems utilize osmotic pressure for controlled delivery of active agent(s). Drug delivery from these systems, to a large extent, is independent of the physiological factors of the gastrointestinal tract and these systems can be utilized for systemic as well as targeted delivery of drugs. We apply the thermal methods and IR spectroscopy to study compatibility between atenolol and several excipients usually found in the osmotic systems formulations (Polyethylene oxide, MW 3350, 100000, 200000 and 5000000; HPMC K4000, magnesium stearate and cellulose acetate. Cellulose acetate, HPMC K4000 and magnesium stearate have essentially no interaction with atenolol otherwise all Polyethylene oxide excipients modifies significantly the drug melting point indicating some extend of interaction.  相似文献   

3.

Background  

Cysteinyl residues in actin are glutathionylated, ie. form a mixed disulfide with glutathione, even in the absence of exogenous oxidative stress. Glutathionylation inhibits actin polymerization and reversible actin glutathionylation is a redox dependent mechanism for regulation of the cytoskeleton structure. The molecular mechanism that mediates actin glutathionylation in vivo is unclear.  相似文献   

4.
We show that analytical ultracentrifugation can be applied to derive full equations of state of colloids in a single sedimentation equilibrium experiment, by determination of single‐phase boundaries as well as of osmotic pressure versus concentration at fixed temperatures. A continuous dependence of the osmotic pressure, over orders of magnitude between at least ~101 and 104 Pa, and a wide concentration range, are determined in agreement with standard theoretical considerations. Two model experimental colloidal systems are investigated: For a well‐known synthetic clay system (laponite), it is shown that two regimes—counter‐ion ideal gas and interacting double layers—can easily be identified in the equation of state, whereas metastable glass‐ or microphase‐separated gel states previously encountered in osmotic stress measurements of laponite are circumvented. For the case of rigid, crystallized catanionic bilayers, single phase domains can be identified. Osmotic pressure results in this case disagree with results obtained using the classical osmotic stress technique, as a result of sample adhesion to the ultracentrifuge cell windows and uncertainty due to possible micromolar ion contamination.  相似文献   

5.
Tubulin is one of the main components of the cytoskeleton of eukaryotic cells. The formation of microtubules depends strongly on environmental and solution conditions, and has been found to be among the most pressure sensitive processes in vivo. We explored the effects of different types of cosolvents, such as trimethylamine-N-oxide (TMAO), sucrose and urea, and crowding agents to mimic cell-like conditions, on the temperature and pressure stability of the building block of microtubules, i. e. the α/β-tubulin heterodimer. To this end, fluorescence and FTIR spectroscopy, differential scanning and pressure perturbation calorimetry as well as fluorescence anisotropy and correlation spectroscopies were applied. The pressure and temperature of dissociation of α/β-tubulin as well as the underlying thermodynamic parameters upon dissociation, such as volume and enthalpy changes, have been determined for the different solution conditions. The temperature and pressure of dissociation of the α/β-tubulin heterodimer and hence its stability increases dramatically in the presence of TMAO and the nanocrowder sucrose. We show that by adjusting the levels of compatible cosolutes and crowders, cells are able to withstand deteriorating effects of pressure even up to the kbar-range.  相似文献   

6.
Peridural scarring, or the excessive formation of scar tissue following spinal surgery, is one of the important contributing factors that result in persistent pain and disability in many individuals who have undergone elective back surgery. Treatment with anti-inflammatory agents following surgery may reduce oxidative stress and scarring, leading to a reduction in post-operative pain. We are using a surgical rat model to test the hypothesis that post-surgical inflammation and oxidative stress following laminectomy can be reduced by systemic administration of L-2-oxo-thiazolidine-4-carboxylate (OTC) and quercetin. OTC is a cysteine precursor required for the synthesis of glutathione, an important antioxidant. Quercetin is a flavenoid with anti-oxidant properties, found in fruits and vegetables. Synchrotron FTIR microspectroscopy data has been collected on OTC, quercetin and saline (control)-treated post-surgery animals, sacrificed at 3 and 21 days (n = 6 per age and treatment group). This paper presents preliminary IR results, supported by immunocytochemistry, on the heterogenous distribution of biological components present in the healing tissue. The data collected on animals sacrificed at 3 and 21 days post-surgery will be combined in the future with data from animals sacrificed 63 days after surgery (representing a third time point) to evaluate the efficacy of the different treatments. Initial statistical analysis of ED1 immunohistochemistry results indicates a decrease in the number of activated macrophages 21 days post-surgery in the OTC-treated animals compared with the saline controls.  相似文献   

7.
8.
A recent theory of the hydrophobic effect together with a simple model for an alcohol molecule is used to calculate the osmotic (McMillan-Mayer) second virial coefficientB 2 for methanol dissolved in water. We use this calculation to study the validity of common arguments that try to draw microscopic structural information from experimental virial coefficient data. In disagreement with many workers, we find that the hydrophobic interaction between hard spheres in water is attractive and that its strength diminishes as temperature is raised. Models that have come to the opposite conclusions have neglected complications inherent to real solutes such as the role of the hydroxy groups in affecting the correlations between the apolar portions of neighboring alcohols. The calculations reported here indicate that this neglect is a poor approximation for methanol. Our calculations also show that osmotic virial coefficients are sensitive to subtle details in the potentials of mean force. Therefore, slowly varying (e.g., dispersion) interactions may also contribute significantly to the values of these coefficients without significantly changing the solvent structure near the solute molecules.  相似文献   

9.
Imitation of cellular processes in cell-like compartments is a current research focus in synthetic biology. Here, a method is introduced for assembling an artificial cytoskeleton in a synthetic cell model system based on a poly(N-isopropyl acrylamide) (PNIPAM) composite material. Toward this end, a PNIPAM-based composite material inside water-in-oil droplets that are stabilized with PNIPAM-functionalized and commercial fluorosurfactants is introduced. The temperature-mediated contraction/release behavior of the PNIPAM-based cytoskeleton is investigated. The reversibility of the PNIPAM transition is further examined in bulk and in droplets and it could be shown that hydrogel induced deformation could be used to controllably manipulate droplet-based synthetic cell motility upon temperature changes. It is envisioned that a combination of the presented artificial cytoskeleton with naturally occurring components might expand the bandwidth of the bottom-up synthetic biology.  相似文献   

10.
We investigate the effects of salt concentration and pH on neutralized poly(acrylic acid) (PAA) gels in near physiological salt solutions. Either adding calcium ions or decreasing the pH is found to induce reversible volume transitions but the nature of these transitions seems to be different. For example, the osmotic pressure exhibits a simple power law dependence on the concentration as the transition is approached in both systems, but the power law exponent n is substantially different in the two cases. On decreasing the pH the value of n gradually increases from 2.1 (at pH = 7) to 3.2 (at pH = 1). By contrast, n decreases with increasing calcium ion concentration from 2.1 (in 100 mM NaCl solution) to 1.6 (0.8 mM CaCl2 in 100 mM NaCl solution). In both systems, a strong increase of the small-angle neutron scattering intensity (SANS) is observed near the volume transition. The SANS results reveal that calcium ions favor the formation of linearly aligned regions in PAA gels. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2803–2810, 2008  相似文献   

11.
12.
13.
14.
We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and stabilize DNA to the nuclear membrane, are severely compromised as measured by a pan-telomere probe. Internal pore formation following nsPEF applications has been described as a factor in induced cell death. Here we suggest that nsPEF induced physical changes to the cell in addition to pore formation need to be considered as an alternative method of cell death. We suggest nsPEF electrochemical induced depolymerization of actin filaments may account for cytoskeleton and nuclear membrane anomalies leading to sensitization.  相似文献   

15.
Nanotopographic control of cytoskeletal organization   总被引:1,自引:0,他引:1  
Growth of 3T3-L1 preadipocytes on a nanoscalar poly(ethylene terephthalate) (PET) surface produced an absence of the intracellular stress fibers characteristic of cell growth on "normal" planar surfaces. This phenomenon was consistently observed from time zero throughout 3 days of culture and was accompanied by changes in paxillin expression along with an approximately 50% decrease in the number of adherent cells in response to 500 dynes/cm(2) of shear stress. This suggests that the cytoskeleton in cells adherent to nanofibrillar surfaces does indeed form, but at a smaller, more difficult to observe scale. We propose a novel mechanism by which the growth and clustering of integrin-associated focal adhesions on surface nanofibrils regulates cytoskeletal development. The width of the extracellular matrix contacts is constrained by the width of the nanofibrils and the absence of any surface between them. The limited dimensions of these point contacts then constrain receptor polymerization and the associated aggregation of actin filaments. The existence of a topographic mechanism leading to growth-limited integrin clustering is hypothesized.  相似文献   

16.
The use of natural plant oils in the production of adhesives has been the focus of much research because natural oils are a renewable resource which have environmental and economic advantages over the petroleum‐derived chemicals used in traditional adhesives. The network formation and the stress–strain behavior of these plant oil–based adhesives is studied using a combination of simulation techniques. An off‐lattice Monte Carlo simulation has been developed to model the formation of these networks via the free‐radical copolymerization of the triglycerides present in natural oils. Networks of systems representing the triglycerides found in soybean oil, linseed oil, and olive oil are generated, as are networks made from other “theoretical” natural oils. The structure of the networks is characterized by percolation analysis. The stress–strain behavior of these networks is studied using large‐scale molecular dynamics simulations. Tensile strains are applied to the networks and it is observed that with increasing n the failure stress increases but the failure strain decreases. Also, for systems with low values of n, large voids form while the system is strained and then the system fails cohesively. However, for large n, no significant voiding is observed and the system fails close to the interface. The simulation results are shown to be consistent with the vector percolation theoretical prediction for how the failure stress relates to n. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3333–3343, 2004  相似文献   

17.
In vivo studies have shown that the cytoskeleton of cells is very sensitive to changes in temperature and pressure. In particular, actin filaments get depolymerized when pressure is increased up to several hundred bars, conditions that are easily encountered in the deep sea. We quantitatively evaluate the effects of temperature, pressure, and osmolytes on the kinetics of the polymerization reaction of actin by high‐pressure stopped‐flow experiments in combination with fluorescence detection and an integrative stochastic simulation of the polymerization process. We show that the compatible osmolyte trimethylamine‐N‐oxide is not only able to compensate for the strongly retarding effect of chaotropic agents, such as urea, on actin polymerization, it is also able to largely offset the deteriorating effect of pressure on actin polymerization, thereby allowing biological cells to better cope with extreme environmental conditions.  相似文献   

18.
Fracture mechanics was used to investigate the environmental stress cracking of low-density polyethylene with 4.0 melt flow index. Annealed samples were prepared; a single edge notch was made and then the samples were fractured under constant load in four different liquid alcohols. The relation between the stress intensity factor K and the crack speed has been investigated. The log vs. logK curves are influenced not only by temperature but also by the alcohol used as the environment. This influence has been studied in detail. The conclusions are as follows: the crack speed at high K is determined by the diffusion mechanism, and this mechanism cannot be explained in terms of hydrodynamics but can be explained in terms of thermally activated molecular motion. On the other hand, the crack speed at low K is strongly related to the plasticization and the stress relaxation of the crack tip material.  相似文献   

19.
20.
Ultrasound acts as an alternative stress on cells or tissues. In this study it is aimed to investigate the effect of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare cells (rice callus) in suspension culture. After the samples were stimulated by ultrasound at 28 kHz, we measured their growth and proliferation by using a colorimetric MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay as well as fresh weights of the cells. Growth curves were obtained by fresh weights in the suspension culture after ultrasonic agitation for different time from 2 to 120 s. In MTT method, the optical density was determined at 570 nm in the cell suspension on 10 days after the ultrasonic agitation. Up to 5 s agitation OD570 increased; it decreased for more prolonged stimulation. We found that ultrasonic stimulation could promote the growth and proliferation of O. sativa Nipponbare cells in suspension culture with the optimal stimulation of 5 s, while with longer agitation, its growth and proliferation was inhibited. The mechanism may be that the ultrasound activated or destroyed the cellular structure, such as cell membrane, cytoskeleton and mitochondria in which many enzymes and ion channels are affected. In addition, the enhancement of cell wall and cell membrane fluidity might be one of the factors to promote the cell growth in 5-s ultrasonic stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号