首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文给出了单向拉伸与面向剪切载荷下复合材料对称层合板中心区域的应力和应变沿板厚的数值计算分布规律。计算结果表明,在斜交对称辅层的层合板中心区域层间界面附近存在着层间边界层效应。层间界面处纤维走向的突变导致局部的三维应力状态和很强的应力集中。  相似文献   

2.
反射型激波风洞中激波与边界层的相互作用   总被引:1,自引:0,他引:1  
本文研究了反射型激波风洞中由于非完全反射对激波与壁面边界层相互作用的影响,给出了在反射激波坐标系中计算边界层速度分布、温度分布和马赫数分布的计算方法.算例表明,在计及氮气的平衡真实气体效应的情形下,随着入射激波马赫数Ms的增大,边界层的最小马赫数从壁面处移到边界层内;随着喷管喉道面积的增大,边界层的最小马赫数、反射激波的分叉角α和分叉区后的射流速度均随之减小.计算结果与实验值相比是一致的.  相似文献   

3.
田纪伟  高智 《中国科学A辑》1992,35(3):282-292
文中证明了本文第二作者提出的简化Navier-Stokes(SNS)方程在层流边界层分离点数学上为正则.Davis和Голвачев-Куэьмин-Попов 提出的SNS方程在分离点为数学奇异.进而论证了文献[2,3]的SNS方程在层流边界层分离点的奇异阶.最后给出了Navier-Stokes方程、上述两种SNS方程以及边界层方程在分离点邻域特性的比较.  相似文献   

4.
给出了在一个特殊坐标系中三阶流体的二维定常运动方程组.该坐标系中由无粘流体的势流确定,即以环绕任意物体的非粘性流动的流线为Ф-坐标,速度势线为ψ-坐标,构成正交曲线坐标系.结果表明,边界层方程与浸没在流体中的物体的形状无关.第一次近似假定第二梯度项与粘性项和第三梯度项相比,可以忽略不计.第二梯度项的存在,将防碍第三梯度流相似解的比例变换的导出.利用李群方法计算了边界层方程的无穷小生成元.将边界层方程组变换为常微分方程组.利用Runge-Kutta法结合打靶技术求解了该非线性微分方程组的数值解.  相似文献   

5.
通过格子玻尔兹曼(lattice Boltzmann method,LBM)数值模拟,研究了液滴在固体平表面上蒸发过程形状变化的机理.揭示了不同静态接触角下液滴蒸发过程中重力对其形状变化的影响规律.结果表明,重力的影响随着液滴尺度的减小而减弱,达到某一临界点后,重力对蒸发过程的影响可以忽略.模拟定量确定了液滴尺寸的这一临界值,并分析了蒸发过程中几个典型时刻液滴内部的流场分布,进一步研究了重力的影响.  相似文献   

6.
液滴润湿现象在细胞的变形和软器件的设计和制作中具有潜在的指导意义.该文在考虑三相接触线处线张力的情况下,研究了液滴引起的梯度薄基变形问题.首先,利用积分变换法求解了基底变形的本构方程,给出了变形的法向位移表达式.其次,讨论了基底弹性模量非梯度、指数型梯度和幂型梯度变化时基底的变形情况.最后,给出了液滴大小、弹性模量、线张力及梯度指数变化时位移的变化情况.数值结果表明弹性模量逐渐减小和梯度指数逐渐增大时,湿润脊逐渐变高,变形也越大;线张力和特征深度越小,位移的峰值越高,变形也越大;液滴半径较小时,湿润脊的对称性会变得更好.  相似文献   

7.
该文针对一类非线性奇摄动微分差分方程边值问题,用边界层函数法构造了一致有效的渐近解.由于偏差效因,边界层函数的确定困难很多.作者用"缝接法"不但证明了光滑解的存在性,而且给出了余项估计.  相似文献   

8.
本文讨论了一类二阶拟线性椭圆型方程的奇摄动问题,给出了外部解和边界层项的N阶递推方程,并对余项进行了估计,从而导得了解的渐近展开式和摄动问题解的存在唯一性.  相似文献   

9.
通过对高维Kramers系统与之对应稳态Fokker-Planck方程的渐近分析,仔细探讨了该系统在平衡点吸引域的边界上离出点的分布问题.运用变量替换、匹配原理、局部坐标变换、边界层展开等方法,对外解、远离鞍点处的边界层及鞍点处的边界层进行分析,得出离出点分布的渐近表达式.  相似文献   

10.
采用CLSVOF方法,引入描述壁面润湿特性的动态接触角,建立了乙醇液滴撞击高温壁面的数值模型,对乙醇液滴撞击高温壁面后的沸腾蒸发过程展开了研究,并与实验数据进行了对比验证.研究表明:在相同液滴温度下,壁面温度越高,亲水性越强,乙醇液滴的撞击速度越快,液滴的沸腾时间越早,蒸发完成所用时间也越短.在此研究基础上,基于机器学习算法,建立了液滴蒸发预测模型,对乙醇液滴撞击高温壁面后蒸发剩余量随时间的变化进行了预测研究,并通过将不同机器学习算法的预测结果与模拟结果对比,选出最优预测模型.  相似文献   

11.
The steady state boundary layer equations around rotating pure hydrocarbon droplet are solved numerically. The droplet is simulated to behave as a hard sphere. The transfer equations are discretized using an implicit finite difference method where Thomas algorithm solves the system of algebraic equations. Moreover, dimensionless parameters of heat and mass transfer phenomena around a rotating hexane droplet concluded. The thickness of the boundary layer is unknown for this model and therefore, it is determined. Further, this work proposes correlations of Nusselt and Sherwood numbers for monocomponent hydrocarbon droplets in evaporation. These correlations consider the rotation phenomena and further, the variation of the thermophysical and transport properties in the vapour phase.  相似文献   

12.
Asymptotic equations that define unsteady processes in a three-dimensional boundary layer with self-induced pressure are derived. The pressure gradient under conditions of free interaction is, as usually, calculated not by the solution of the external problem of flow over a body, but on the assumption that it is due to growth of streamline displacement thickness near the body surface. Besides the principal terms, terms of second order of smallness are retained in asymptotic sequencies. If the characteristic dimensions of the free interaction region are the same in all directions in the plane tangent to the body surface, the system of equations defining the thin layer next to the wall must be integrated together with the system which defines the nonviscous stream.  相似文献   

13.
The conservation laws for laminar axisymmetric jet flows with weak swirl are studied here. The multiplier approach is used to derive the conservation laws for the system of three boundary layer equations for the velocity components governing flow in laminar axisymmetric jet flows with weak swirl. Conservation laws for the system of two partial differential equations for the stream function are also derived.  相似文献   

14.
Several schemes for seepage flows from the channels and ditches of irrigation systems through a layer of soil underlaid by a highly permeable artesian water-bearing table or an impermeable foundation are considered within the framework of the theory of the plane steady seepage of an incompressible liquid oblying to Darcy's law. Mixed multiparameter boundary value problems of the theory of analytic functions are formulated for their investigation, which are solved using Polubarinova–Kochina's method and integration of differential equations of the Fuchs class that are characteristic in problems of subterranean hydromechanics. On the basis of these models, algorithms are developed for calculating the dimensions of the saturation zone in cases when, in the seepage of water from channels and irrigation ditches, there is a need to estimate the combined effect on the pattern of motion of such important factors as the backwater from the underlying artesian water table or confining bed, the soil capillarity and the evaporation of ground waters from the free surface. The results of the calculations for all the flow schemes are compared for identical seepage characteristics.  相似文献   

15.
The characteristic feature of the wide variety of hydraulic shear flows analyzed in this study is that they all contain a critical level where some of the fluid is turned relative to the ambient flow. One example is the flow produced in a thin layer of fluid, contained between lateral boundaries, during the passage of a long eddy. The boundaries of the layer may be rigid, or flexible, or free; the fluid may be either compressible or incompressible. A further example is the flow produced when a shear layer separates from a rigid boundary producing a region of recirculating flow. The equations used in this study are those governing inviscid hydraulic shear flows. They are similar in form to the classical boundary layer equations with the viscous term omitted. The main result of the study is to show that when the hydraulic flow is steady and contained between lateral boundaries, the variation of vorticity ω(ψ) cannot be prescribed at any streamline which crosses the critical level. This variation is, in fact, determined by (1) the vorticity distribution at all streamlines which do not cross the critical level, by (2) the auxiliary conditions which must be satisfied at the boundaries of the fluid layer, and by (3) the dimensions of the region containing the turned flow. If at some instant the vorticity distribution is specified arbitrarily at all streamlines, generally the subsequent flow will be unsteady. In order to emphasize this point, a class of exact solutions describing unsteady hydraulic flows are derived. These are used to describe the flow produced by the passage of a long eddy which distorts as it is convected with the ambient flow. They are also used to describe the unsteady flow that is produced when a shear layer separates from a boundary. Examples are given both of flows in which the shear layer reattaches after separation and of flows in which the shear layer does not reattach. When the shear layer vorticity distribution has the form ωαyn, where y is a distance measure across the layer, the steady flows are of Falkner-Skan type inside, and adjacent to, the separation region. The unsteady flows described in this paper are natural generalizations of these Falkner-Skan flows. One important result of the analysis is to show that if the unsteady flow inside the separation region is strongly sheared, then the boundary of the separation region moves upstream towards the point of separation, forming large transverse currents. Generally, the assumption of hydraulic flow becomes invalid in a finite time. On the other hand, if the flow inside the separation region is weakly sheared, this region is swept downstream and the flow becomes self-similar.  相似文献   

16.
We consider a laminar boundary‐layer flow of a viscous and incompressible fluid past a moving wedge in which the wedge is moving either in the direction of the mainstream flow or opposite to it. The mainstream flows outside the boundary layer are approximated by a power of the distance from the leading boundary layer. The variable pressure gradient is imposed on the boundary layer so that the system admits similarity solutions. The model is described using 3‐dimensional boundary‐layer equations that contains 2 physical parameters: pressure gradient (β) and shear‐to‐strain‐rate ratio parameter (α). Two methods are used: a linear asymptotic analysis in the neighborhood of the edge of the boundary layer and the Keller‐box numerical method for the full nonlinear system. The results show that the flow field is divided into near‐field region (mainly dominated by viscous forces) and far‐field region (mainstream flows); the velocity profiles form through an interaction between 2 regions. Also, all simulations show that the subsequent dynamics involving overshoot and undershoot of the solutions for varying parameter characterizing 3‐dimensional flows. The pressure gradient (favorable) has a tendency of decreasing the boundary‐layer thickness in which the velocity profiles are benign. The wall shear stresses increase unboundedly for increasing α when the wedge is moving in the x‐direction, while the case is different when it is moving in the y‐direction. Further, both analysis show that 3‐dimensional boundary‐layer solutions exist in the range −1<α<. These are some interesting results linked to an important class of boundary‐layer flows.  相似文献   

17.
A spectral Fourier-Chebyshev method for calculating unsteady two-dimensional free surface flows is presented and discussed. The vorticity-stream function equations are used in association with an influence matrix technique for prescribing the boundary and free surface conditions. The stability of the time-discretization scheme is analysed. Finally, numerical results are given for various physical problems.  相似文献   

18.
The steady mixed convection boundary layer flow over a vertical surface immersed in an incompressible micropolar fluid is considered in this paper. Employing suitable similarity transformations, the governing partial differential equations are transformed into ordinary differential equations, and the transformed equations are solved numerically by the Keller-box method. Numerical results are obtained for the skin friction coefficient and the local Nusselt number as well as the velocity, angular velocity and temperature profiles. Both cases of assisting and opposing buoyant flows are considered. It is found that dual solutions exist for the assisting flow, besides that usually reported in the literature for the opposing flow. Moreover, in contrast to the classical boundary layer theory, the separation point of the boundary layer is found to be distinct from the point of vanishing skin friction.  相似文献   

19.
该文研究了二维不可压缩磁流体方程的解,其中要求磁流体的速度满足Dirichlet边界条件、磁场在边界上的值与时间无关. 利用Taylor展开式和不可压缩流的结构分歧理论, 得到了磁流体方程发生边界层分离的条件, 它取决于外力、初值和磁场在边界上的取值, 并且该条件可以预测磁流体边界层分离发生的时间与地点.  相似文献   

20.
The two-dimensional nonequilibrium hypersonic free jet boundary layer gas flow in the near wake of a body is studied using a closed system of macroscopic equations obtained (as a thin-layer version) from moment equations of kinetic origin for a polyatomic single-component gas with internal degrees of freedom. (This model is can be used to study flows with strong violations of equilibrium with respect to translational and internal degrees of freedom.) The solution of the problem under study (i.e., the kinetic model of a nonequilibrium homogeneous polyatomic gas flow in a free jet boundary layer) is shown to be related to the known solution of the well-studied simpler problem of a Navier-Stokes free jet boundary layer, and a method based on this relation is proposed for solving the former problem. It is established that the gas flow velocity distribution along the separating streamline in the kinetic problem of a free jet boundary layer coincides with the distribution obtained by solving the Navier-Stokes version of the problem. It is found that allowance for the nonequilibrium nature of the flow with respect to the internal and translational degrees of freedom of a single-component polyatomic gas in a hypersonic free jet boundary layer has no effect on the base pressure and the wake angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号