首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of steroidal 1,5-benzothiazepine and its derivatives have been synthesized by the reaction of α,β-unsaturated ketones with 2-aminothiophenol using small amount of dimethylformamide (DMF) as a solvent and catalytic amount of acetic acid at 45–50°C under ultrasonic irradiation. This method provides several advantages such as the shortest reaction time, high yields, simple work-up procedure, and purification of products by nonchromatographic methods. All the synthesized compounds were screened for their acetylcholinesterase (AChE) inhibition activity. These compounds exhibited moderate AChE inhibition activity as compared to the standard drug, tacrine. Compound 5 showed the highest inhibition among all benzothiazepines. The AChE inhibition activity of the compound 5 was further investigated with the help of in silico docking study to predict the active sites.  相似文献   

2.
4′-Chloroaurone (1a), the only aurone reported from a marine source, Spatoglossum variabile was synthesized from 2-hydroxyacetophenone along with six structural analogs. The products obtained were Z-isomers and these were converted into E-isomers by photoisomerization. The E and Z isomers of aurones showed distinct proton and carbon chemical shifts. However, the spectroscopic data of either Z-4′-chloroaurone (1a) or its E-isomer (2a) did not match with those reported for the natural product and thus requires revision of the structure assigned. The proton NMR spectroscopic data reported for the natural product matches with those reported for a known isocoumarin (5). The synthesized E and Z aurones were evaluated for their antioxidant and antibacterial activities. The aurone, Z-2-[(3,4-dihydroxyphenyl)methylene]benzo[b]furan-3-one exhibited significant antioxidant activity. Interestingly, Z-aurones are active against Gram-positive and Gram-negative bacteria, whereas the corresponding E-aurones were inactive.  相似文献   

3.
In this research, two new series of N-arylsulfonyl hydrazone compounds ( 14 – 25 ) possessing a sulfonate moiety were synthesized and characterized by elemental analysis and various spectroscopic techniques including fourier transform infrared (FT-IR), 1H-, and 13C nuclear magnetic resonance (NMR). These compounds synthesized as target molecules ( 14 – 25 ) were tested for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition activities and antioxidant potential. The antioxidant capacities of the tested molecules were determined by four different assays. The IC50 values of the screened molecules were determined in the range of 60.14 ± 0.25–84.81 ± 1.09 μM against AChE and in the range of 70.11 ± 0.67–93.60 ± 0.47 μM against BChE. In the AChE assay, 4-hydroxybenzaldehyde-based compound 25 (60.14 ± 0.25 μM) showed the highest activity in comparison to rivastigmine (501 ± 3.08 μM). This compound (71.42 ± 0.19 μM) is also one of the compounds with the highest activity against BChE. In the BChE assay, 2-hydroxybenzaldehyde-based compound 19 (70.11 ± 0.67 μM) indicated the highest activity in comparison to rivastigmine (19.95 ± 0.20 μM). In antioxidant activity studies, the tested molecules showed lower activities than the standard compounds (butylated hydroxytoluene and α-tocopherol). Consequently, some novel compounds can be used as potential inhibitor candidates in future studies.  相似文献   

4.
A series of 20 novel α-aminophosphonate derivatives bearing quinoline or quinolone moiety was designed and synthesized via Kabachnik-Fields reaction in the presence of triethylammonium acetate as a solvent and catalyst under ultrasound irradiation. This procedure affords products in high yields and short reaction times. Molecular structures of the synthesized compounds 4a-g and 5a-m were confirmed using various spectroscopic methods. The antioxidant activity of these compounds was evaluated by eight complementary in vitro tests. The anticholinesterase activity (AChE, BChE) of these compounds were also evaluated. In addition, theoretical calculations of all compounds were investigated as corrosion inhibitors using density functional theory (DFT). The results revealed that 16 of these compounds exhibited high levels of antioxidant activities depending on the assay and that most compounds showed more potent inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).  相似文献   

5.
A new series of benzimidazole derivatives ( 1-15 ) containing 1,2,4-triazole, 1,3,4-thiadiazole, 1,3,4-oxadiazole, and thiazolidinon rings have been synthesized. All new synthesized benzimidazole compounds were confirmed by 1H NMR, 13C NMR spectra, and LC-MS, and they were examined for their antioxidant and antimicrobial activities. Compounds 7 and 1 showed the highest and the lowest antioxidant activities, respectively. The lowest minimum inhibition concentration value found in compound 5 against Enterobacter aerogenes.  相似文献   

6.
The acetylcholinesterase (AChE) inhibitors are the main drugs for symptomatic treatment of neurodegenerative disorders like Alzheimer’s disease. A recently designed, synthesized and tested hybrid compound between the AChE inhibitor galantamine (GAL) and the antioxidant polyphenol curcumin (CU) showed high AChE inhibition in vitro. Here, we describe tests for acute and short-term toxicity in mice as well as antioxidant tests on brain homogenates measured the levels of malondialdehide (MDA) and glutathione (GSH) and in vitro DPPH, ABTS, FRAP and LPO inhibition assays. Hematological and serum biochemical analyses were also performed. In the acute toxicity tests, the novel AChE inhibitor given orally in mice showed LD50 of 49 mg/kg. The short-term administration of 2.5 and 5 mg/kg did not show toxicity. In the ex vivo tests, the GAL-CU hybrid performed better than GAL and CU themselves; in a dose of 5 mg/kg, it demonstrates 25% reduction in AChE activity, as well as a 28% and 73% increase in the levels of MDA and GSH, respectively. No significant changes in blood biochemical data were observed. The antioxidant activity of 4b measured ex vivo was proven in the in vitro tests. In the ABTS assay, 4b showed radical scavenging activity 10 times higher than the positive control butylhydroxy toluol (BHT). The GAL-CU hybrid is a novel non-toxic AChE inhibitor with high antioxidant activity which makes it a prospective multitarget drug candidate for treatment of neurodegenerative disorders.  相似文献   

7.
A series of 2-(arylmethylidene)-2,3-dihydro-1-benzofuran-3-one derivatives(aurones, 1–20) were synthesized and screened for their inhibitory activity against h MAO. Seventeen compounds(1–5, 7–17,19) were found to be selective towards h MAO-B, while two were non-selective(6 and 20) and one(18)selective towards h MAO-A. Compound 17(Ki = 0.10 0.01 mmol/L) was found to be equally potent and selective towards h MAO-B, when compared with the standard drug Selegiline(Ki = 0.12 0.01 mmol/L).Nature and position of substitution in aryl ring at 2nd position of benzofuranone influences h MAO-B inhibitory potency, while their structural bulkiness influences selectivity between h MAO-A and h MAO-B.Molecular docking simulation was also carried out to understand the interaction of inhibitor with the enzyme at molecular level, and we found the docking results were in good agreement with the experimental values. Comparison of the activity profile of the aurones with their corresponding flavones reported earlier by our group revealed that there exists no difference in potency as well as selectivity.  相似文献   

8.
Aqueous extracts of aerial flowering parts of five Agrimonia species (Rosaceae): Agrimonia coreana Nakai, Agrimonia japonica (Miq.) Koidz, Agrimonia procera Wallr., Agrimonia eupatoria L. and Agrimonia leucantha Kunze were investigated on their antioxidant activity, measured using five different methods; the best was the extract from A. procera with IC50 values from 6 to 29 μg/mL. All the extracts displayed inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) at the tested concentration of 100 μg/mL. We found the highest inhibition of cholinesterase in the extract of A. japonica with inhibition 70.4% for AChE and 79.8% for BuChE. These findings are statistically significant in comparison with those of other extracts (p < 0.001). The phytochemical analyses showed that the antioxidant activity of Agrimonia extracts can be affected especially by hexahydroxydiphenoyl (HHDP)-glucose and quercetin glycosides, and inhibition of cholinesterases by apigenin, luteolin and quercetin glycosides.  相似文献   

9.
A new 4‐hydroxy‐3‐carboxycoumarin ligand and its ruthenium(II) complexes ( 1 – 5 ) have been synthesized, characterized and screened for their in vitro antibacterial activity against a range of Gram‐positive and Gram‐negative bacteria. In addition, compounds 1 – 5 were investigated for antioxidant activities using superoxide radical, 2,2‐diphenyl‐1‐picrylhydrazyl radical and hydroxyl radical scavenging assays, in which most of them displayed significant antioxidant activities. Furthermore, compounds 1 – 5 were evaluated for anti‐inflammatory activity using indirect haemolytic and lipoxygenase inhibition assays and revealed good activity. The new complexes were characterized using spectroscopic methods in addition to elemental analysis.  相似文献   

10.
Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer’s disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs) are considered as safer and less toxic compared to synthetic drugs, led us to screen the available NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity. The compounds were screened virtually by molecular docking, filtered for suitable ADME properties, and 32 ligands from 23 structural groups were selected. The stability of the complexes was estimated via 1 μs molecular dynamics simulation. Ten compounds formed stable complexes with the enzyme and had a vendor and a reasonable price per mg. They were tested for AChE inhibitory and antioxidant activity. Five compounds showed weak AChE inhibition and three of them exhibited high antioxidant activity.  相似文献   

11.
Alzheimer’s disease (AD) is a slowly progressive neurodegenerative disease that causes dementia in people aged 65 and over. In the present study, a series of thiadiazole hybrid compounds with benzothiazine derivatives as acetylcholinesterase inhibitors were developed and evaluated for their biological activity. The AChE and BChE inhibition potentials of all compounds were evaluated by using the in vitro Ellman method. The biological evaluation showed that compounds 3i and 3j displayed significant inhibitory activity against AChE. Compounds 3i and 3j showed IC50 values of 0.027 µM and 0.025 µM against AChE, respectively. The reference drug donepezil (IC50 = 0.021 µM) also showed significant inhibition against AChE. Further docking simulation also revealed that these compounds (3i and 3j) interacted with the active site of the enzyme similarly to donepezil. The antioxidant study revealed that compounds 3i and 3j exhibited greater antioxidant effects. An in vitro blood–brain barrier permeability study showed that compounds 3i and 3j are promising compounds against AD. The cytotoxicity study of compounds 3i and 3j showed non-cytotoxic with an IC50 value of 98.29 ± 3.98 µM and 159.68 ± 5.53 µM against NIH/3T3 cells, respectively.  相似文献   

12.
A series of novel N-1 and C-3 substituted indole derivatives (5a–f) were designed, synthesized and evaluated for their cytotoxic properties, viz Brine Shrimp Lethality Bioassay (BSLB) besides 5-Lipoxygenase (5-LOX) inhibitory activities through in vitro assays. Structure Activity Relation (SAR) studies showed that compound 5d with an LC50 of 6.49 μM and 5c with an IC50 of 33.69 μM were found to be interesting for cytotoxicity and 5-LOX inhibitory activity respectively.  相似文献   

13.
We analyzed the effects of UV radiation (UVR) effects on acetylcholinesterase (AChE) activity in two calanoid copepods, Boeckella gibbosa and Parabroteas sarsi that inhabit Patagonian shallow lakes. We studied the effect of experimental UVR (UV-B and UV-A) exposure on AChE activity in relation to basal antioxidant capacities of both copepods. Our experiments showed that UVR can effectively depress AChE activity, although with differences between species. In both copepods AChE was affected by UV-B, whereas UV-A only affected AChE in B. gibbosa. Both copepods also differed in body elemental composition (C:N:P), photoprotecting compound content (carotenoids and mycosporine-like amino acids) and enzymatic antioxidant capacity (glutathione S-transferase [GST]). Our results suggest that when exposed to UVR, AChE activity would depend more on the antioxidant capacity (GST) and P availability for enzyme synthesis than on the photoprotective compounds.  相似文献   

14.
Fourteen metabolites with various structure types were isolated from endophytic Chaetomium globosum. Five compounds were separated from genus Chaetomium for the first time. Some compounds exhibited remarkable inhibition against phytopathogenic fungi causing root rot of Panax notoginseng. Compounds 15 had significant DPPH-free radical-scavenging activity. Compounds 3 and 5 indicated significant inhibitions against the acetylcholinesterase (AChE). From preliminary structure–activity relationship, it was found that the oxygenic five-membered ring of 3 and 5 was crucial in the anti-AChE activity. These structures provide new templates for the potential treatment and management of plant diseases and Alzheimer disease.  相似文献   

15.
A series of novel substituted (E)‐N′‐benzylidene‐4‐methyl‐2‐(2‐propylpyridin‐4‐yl)thiazole‐5‐carbohydrazide derivatives ( 6a‐l ) have been synthesized by following the multistep synthetic route starting from prothionamide. The resulting compounds were characterized via 1H, 13C NMR, and HRMS spectral data. The synthesized carbohydrazides were evaluated for their in vitro antimicrobial and antioxidant activities. Tested molecules have displayed moderate to good growth inhibition activity. Among the screened compounds, 6b , 6e , 6j, and 6k are found to be the more promising antimicrobial agents. A 2,2‐diphenyl‐1‐picrylhydrazyl assay was used to test the antioxidant activity of the carbohydrazides. The carbohydrazide derivatives 6b and 6i have shown better free‐radical scavenging ability than the other investigated compounds.  相似文献   

16.
Two series of ten chalcones and ten aurones, where ferrocene replaces the C ring and with diverse substituents on the A ring were synthesized. The compounds were tested against two antibiotic-sensitive bacterial strains, E. coli ATCC 25922 and S. aureus ATCC 25923, and two antibiotic-resistant strains, S. aureus SA-1199B and S. epidermidis IPF896. The unsubstituted compound and those with methoxy substitution showed an inhibitory effect on all bacterial strains at minimum inhibitory concentrations ranging between 2 and 32 mg L(-1). For four of these compounds, the effect was bactericidal, as opposed to bacteriostatic. The corresponding organic aurones did not show growth inhibition, underscoring the role of the ferrocene group. The methoxy-substituted aurones and the unsubstituted aurone also showed low micromolar (IC(50)) activity against MRC-5 non-tumoral lung cells and MDA-MB-231 breast cancer cells, suggesting non-specific toxicity.  相似文献   

17.
The present study was conducted to synthesize silver chloride nanoparticles using the aqueous extract of outer peel of peach fruit (Prunus persica L.) and to evaluate its antibacterial activity, synergistic antibacterial and anticandidal potential against five foodborne pathogenic bacteria and five pathogenic Candida species respectively along with its antioxidant potential. The synthesized silver chloride nanoparticles (PE-AgClNPs) were visually confirmed with surface plasmon resonance peak at 440?nm upon UV–Vis spectroscopy analysis. Furthermore, the morphology, elemental composition and crystallinity nature were also characterized. PE-AgClNPs displayed strong antibacterial potentials (9.01–10.83?mm inhibition zone) against foodborne pathogenic bacteria and increased synergistic effect with kanamycin and rifampicin. PE-AgClNPs also displayed strong anticandidal synergistic activity with standard amphotericin b (10.51–14.01?mm inhibition zones), along with strong free radical scavenging and reducing power. Based on strong antibacterial and antioxidant capacities, PE-AgClNPs are anticipated to have potential applications in the biomedical and food sector industries.  相似文献   

18.
A new flavonoid, atalantraflavone (1) as well as eight known compounds including atalantoflavone (2), racemoflavone (3), 5,4′-dihydroxy-(3″,4″-dihydro-3″,4″-dihydroxy)-2″,2″-dimethylpyrano-(5″,6″:7,8)-flavone (4), lupalbigenin (5), anabellamide (6), citrusinine I (7), p-hydroxybenzaldehyde (8), and frideline (9), were isolated from the leaves of Atalantia monophylla (L.) DC. Focusing on Alzheimer’s disease, acetylcholine esterase (AChE) inhibition and antioxidant activity were evaluated using the modified Ellman’s method and the ABTS scavenging assay, respectively. It was found that isoflavonoid 5, lupalbigenin, showed 79% inhibition to AChE and was 1.4-fold stronger than the tacrine standard. In addition, acridone 7, citrusinine I, displayed 90.68% antioxidant activity.  相似文献   

19.
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.  相似文献   

20.
A highly sensitive amperometric biosensor for the detection of organophosphate pesticides (OPs) is developed. The biosensor was fabricated by immobilized acetylcholinesterase (AChE) on manganese (III) meso‐tetraphenylporphyrin (MnTPP) nanoparticles (NPs)‐modified glassy carbon (GC) electrode. The MnTPP NPs used in this article were synthesized by mixing solvent techniques. AChE enzyme was immobilized on the MnTPP NPs surface by conjugated with chitosan (CHIT). The electrocatalytic activity of MnTPP NPs led to a greatly improved performance for thiocholine (TCh) product detection. The developed AChE‐CHIT/MnTPPNP/GC biosensor integrated with a flow‐injection analysis (FIA) system was used to monitor trichlorfon (typical OP). A wide linear inhibition response for trichlorfon is observed in the range of 1.0 nM–1.0 mM, corresponding to 10–83% inhibition for AChE with a detection limit of 0.5 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号