首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The indolocarbazole family of natural products, including the biosynthetically related bisindolylmaleimides, is reviewed (with 316 references cited). The isolation of indolocarbazoles from natural sources and the biosynthesis of this class of compounds are thoroughly reviewed, including recent developments in molecular genetics, enzymology and metabolic engineering. The biological activities and underlying modes of action displayed by natural and synthetic indolocarbazoles is also presented, with an emphasis on the development of analogs that have entered clinical trials for its future use against cancer or other diseases.  相似文献   

2.
Structures, optical properties, and photophysics of ladder indolo[3,2-b]carbazoles substituted symmetrically by phenylene and thiophene rings have been investigated theoretically and experimentally. The ground state optimized structures were obtained using the density functional theory (DFT) as approximated by the B3LYP functional and employing the 6-31G* basis set. All derivatives were found nonplanar in their electronic ground states. The character and the energy of the singlet–singlet electronic transitions have been investigated by applying the time-dependent density functional theory (TDDFT) to the correspondingly optimized-ground-state geometries. The ab initio restricted configuration interaction (singles) method (RCIS/6-31G*) was adopted to obtain the first singlet excited-state structures (S1) of the molecule. TDDFT calculations performed on the S1 optimized geometries was used to obtain emission energies. UV–vis and fluorescence spectroscopies were analyzed in conjunction with theoretical calculations. The computed excitation and emission energies were found in reasonable agreement with the experimental absorption and fluorescence spectra. Finally, the photophysical behavior of the indolocarbazoles have been studied by means of steady state and time resolved fluorescence. The overall data have allowed the determination of the rate constants for the radiative and nonradiative decay processes. Both theoretical and experimental data show that the replacement of phenylene rings by thiophene units induces a red shift in the absorption and fluorescence spectra. This behavior is interpreted in terms of the electron donor properties of the thiophene ring. On the other hand, the change of the substitutional pattern, from 2,8 to 3,9, causes a significant hypsochromic shift of the absorption and fluorescence bands.  相似文献   

3.
《中国化学》2017,35(9):1349-1365
Transition‐metal catalyzed oxidation reactions are central components of organic chemistry. On behalf of green and sustainable chemistry, molecular oxygen (O2) has been considered as an ideal oxidant due to its natural, inexpensive, and environmentally friendly characters, and therefore offers attractive academic and industrial prospects. In recent years, some powerful organic oxidation methods have been continuously developed. Among them, the use of molecular oxygen (O2) as a green and sustainable oxidant has attracted considerable attentions. However, the development of new transition metal‐catalyzed protocols using O2 as an ideal oxidant is highly desirable but very challenging because of the low standard electrode potential of O2 to reoxidize the transition‐metal catalysts. In this Account, we highlight some of our progress toward the use of transition‐metal catalyzed aerobic oxidation reactions. Through the careful selection of ligand and the acidic additives, we have successfully realized the reoxidation of Cu, Pd, Mn, Fe, Ru, Rh, and bimetallic catalysts under O2 or air atmosphere (1 atm) for the oxidative coupling, oxygenation reactions, oxidative C‐H/C‐C bond cleavage, oxidative annulation, and olefins difunctionalization reactions. Most of the reactions can tolerate a range of functional groups. These methods provide new strategies for the green synthesis of alkynes, (α ‐keto)amides/esters, ketones/diones, O/N‐heterocycles, β ‐azido alcohols, and nitriles. The high efficiency, low cost, and simple operation under air make these methodologies very attractive and practical. We will also discuss the mechanisms of these reactions which might be useful to promote the new type of aerobic oxidative reaction design.  相似文献   

4.
Evgeny Katz 《Electroanalysis》2016,28(9):1916-1929
This article is an overview of extensive research efforts in the area of temperature‐controlled electrochemical systems. Electrochemical reactions, including electrocatalytic and bioelectrocatalytic processes, have been reversibly activated and inhibited by temperature changes. This was achieved by modification of electrode surfaces with thermo‐sensitive polymers (e.g., poly(N‐isopropylacrylamide), PNIPAM) which are reversibly switched by temperature changes between two different structures: swollen expanded coil conformation and shrunken collapsed globule state. While the swollen hydrophilic state allows penetration of redox species to the electrode conducting support and activates electrochemical reactions, the collapsed hydrophobic state isolates the electrode surface and inhibits electrochemical processes. Electrodes modified with the thermo‐switchable polymers have been additionally functionalized with photo‐switchable molecules (e.g., spiropyran derivatives) to achieve double‐controlled electrochemical reactions switchable by temperature changes and light signals. Incorporation of metallic nanoparticles or graphene species in the temperature‐sensitive polymer films resulted in sophisticated features and multi‐signal controlled behavior of the nano‐composite systems.  相似文献   

5.
The storage behavior and the first delithiation of LiCoO2 electrode in 1 mol/L LiPF6-EC:DMC:DEC electrolyte were investigated by electrochemical impedance spectroscopy (EIS). It has found that, along with the increase of storage time, the thickness of SEI film increases, and some organic carbonate lithium compounds are formed due to spontaneous reactions occurring between the LiCoO2 electrode and the electrolyte. When electrode potential is changed from 3.8 to 3.95 V, the reversible breakdown of the resistive SEI film occurs, which is attributed to the reversible dissolution of the SEI film component. With the increase of electrode potential, the thickness of SEI film increases rapidly above 4.2 V, due to overcharge reactions. The inductive loop observed in impedance spectra of the LiCoO2 electrode in Li/LiCoO2 cells is attributed to the formation of a Li1−x CoO2/LiCoO2 concentration cell. Moreover, it has been demonstrated that the lithium-ion insertion-deinsertion in LiCoO2 hosts can be well described by both Langmuir and Frumkin insertion isotherms, and the symmetry factor of charge transfer has been evaluated at 0.5. Supported by the Special Funds for Major State Basic Research Project of China (Grant No. 2002CB211804)  相似文献   

6.
Using the cyclic voltammetry (CV), the electron-transfer kinetics for the reductions of NO+ and NO2+ cations have been studied at the Pt electrode in nitromethane, sulfolane, and propylene carbonate. The heterogeneous rate constants have been determined by two independent procedures from the transfer coefficient α, the diffusion coefficient D, from a detailed examination of the CV-peak separations, and from an inspection of the values of the cathodic peak potentials at different scan rates. The results have been compared to those reported in the literature, and discussed. In the classical model, outer-sphere electron-transfer reactions are considered subject to an activation energy arising from solvent reorganization and bond reorganization processes. The solvent and molecular reorganizational barriers for these electroreductions have been assessed in aprotic media. The Marcus-Hush theory has been applied to the self-exchange reactions of the NO2+/NO2 and NO+/NO couples in an attempt to predict the rate of electron transfer. The findings indicate some improvement between theory and experiment. However, it should be noted that the experimental values of ks found for the NO2+ reduction in the solvents used are still too high in comparison with those determined theoretically. In view of the fairly strong coordination of the solvent molecule(s) as ligand(s) to NO2+ and NO+ cations, we believe that such discrepancies should stem, to some extent, from the involvement of an inner-sphere pathway by generation of an activated complex on the surface of the Pt electrode. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The behavior of 4H-benzo[d,e,f]earbazole and its N-aeetyl derivative in various electrophilic substitution reactions (e.g. nitration, nitrosation, bromination, Friedel-Crafts acylations) has been investigated, and a number of new derivatives of this heterocycle (some of which are to be tested as potential carcinogens and enzyme-inducers) have been synthesized.  相似文献   

8.
Metal/metal (hydr)oxide heterostructures have been proposed as an efficient means to enhance the kinetics of hydrogen electrode reactions (the hydrogen evolution and the hydrogen oxidation reaction) on Pt, Ni, and other electrodes in the alkaline medium. However, the reasons for the faster electrode kinetics are still not fully understood. By considering two electrode materials, namely Pt and Ni, widely studied in hydrogen electrode reactions in alkaline media, this review brings to light differences in their pH-dependent behavior and likely different genesis of the enhancement in the presence of 3d transition metal oxides.  相似文献   

9.
The mass spectra of 6-substituted-2,4-bis-(m-aminoanilino)-s-triazines were determined and found to be dominated by intense molecular ions (base peak), strong M-H peaks and fragment ions diagnostic for the arylamino and C-6 substituents. Mechanisms have been proposed for the formation of the major peaks in the spectra. Fragmentation pathways involving hydrogen transfer reactions have been rationalized by concomitant opening of the triazine ring rather than an amino-imino tautornerization as previously suggested. Fragmentation reactions accompanied by rearrangement modes have also been encountered in some of the compounds studied.  相似文献   

10.
Summary A sensitive ion-exclusion chromatographic method has been developed for determination of oxalate, thiosulfate, and thiocyanate. The method is based on separation of these anions on a polymethacrylate-based, weakly acidic cation-exchange resin (TSKgel OApak-A) and detection by means of a glassy carbon (GC) electrode electrochemically modified with polyvinylpyridine (PVP), palladium, and iridium oxide (PVP/Pd/IrO2). The electrochemical behavior of oxalate, thiosulfate, and thiocyanate at this chemically modified electrode (CME) have been investigated by cyclic voltammetry. The results indicated that electrocatalytic oxidation of these anions by the electrode was efficient and that the sensitivity, stability, and lifetime of the electrode were relatively high. Combined with ion-exclusion chromatography the PVP/Pd/IrO2 electrode was used as the working electrode for amperometric detection of these anions. All linear ranges were over two orders of magnitude and detection limits, defined asS/N=3, were 9.0×10−7 mol L−1 for oxalate, 6.7×10−7 mol L−1 for thiosulfate, and 5.6×10−7 mol L−1 for thiocyanate. Correlation coefficients were all>0.998. Coupled with microdialysis sampling the method has been successfully applied to the determination of oxalate, thiosulfate, and thiocyanate in urine.  相似文献   

11.
The influence of solvents on the redox behaviour of bistriphenylphosphinomercury perchlorate has been investigated by polarographic, voltammetric and potentiometric methods. The electrode process was found to be reversible in acetonitrile, propylene carbonate, N,N-dimethylformamide and dimethyl sulfoxide. An irreversible process was observed in nitromethane employing the dropping mercury electrode as well as in N,N-dimethylthioformamide and N-methyl-2-thiopyrrolidinone employing the rotating platinum electrode. Half wave potentials and diffusion coefficients have been measured. A linear relationship between theE 1/2 and the donor number (DN) of the solvent has been found for the reversible electrode reactions. Ligand replacement occurs in N,N-dimethylthioformamide and N-methyl-2-thiopyrrolidinone.  相似文献   

12.
《Electroanalysis》2006,18(1):103-106
In Arabidopsis cytosol (supernatant) and in supernatants of vegetable plants high molecular mass cadmium proteins with molecular mass 200 kDa were isolated by using p reparative n ative c ontinuous p olya crylamide g el e lectrophoresis (PNC‐PAGE). Because of a different electrochemical behavior of the Cd proteins in Arabidopsis and endive supernatants on using the same PAGE method, it is concluded that the high molecular mass cadmium proteins of Arabidopsis and endive possess different isoelectric points. Consequently, different chemical structures of the Cd proteins with molecular mass 200 kDa are present in Arabidopsis thaliana and in endive. During the electrophoretic separation of vegetable metalloproteins by using the Model 491 Prep Cell from BioRad, electroanalytical processes like electrode reactions may play an important role.  相似文献   

13.
New six-coordinate ruthenium(III) Schiff-base complexes of general formula [Ru(X)(PPh3)(L)] (where X = Cl/Br and L = mononucleating bibasic tetradentate ligand derived by condensing actetoacetanilide/acetoacetotoludide with o-aminophenol/o-aminothiophenol/o-aminobenzoic acid in 1 : 2 molar ratio in ethanol) have been synthesized and characterized by physico-chemical and spectroscopic methods. The new ruthenium(III) complexes possess 2NO/2NS metal binding sites and are catalysts for the oxidation of alcohols using molecular oxygen as co-oxidant and in C–C coupling reactions. These complexes possess good biocidal (antibacterial and antifungal) activity.  相似文献   

14.
Sulfur (S) and selenium (Se) have been considered as promising high capacity cathode materials for rechargeable batteries. They have differences in their physical properties (e.g., electronic conductivity) but the same number of electrons in their outermost shells, which leads to similarity in their electrochemical behavior in batteries. In recent years, some efforts have been taken to combine them in electrodes in the hope of improved battery performance. The S−Se bonds of these electrode materials lead to unusual properties and intriguing electrochemical behavior, which have attracted increasing interest. In this Minireview, electrode materials containing S−Se bonds are summarized, including inorganic SxSey solid solutions, organic compounds, and organic–inorganic hybrid materials. Our understanding in these materials is still premature, but they have shown unique properties to be electrode materials. We hope this Minireview could provide a new insight into the design, synthesis, and understanding of these materials, which could enable high energy density rechargeable batteries.  相似文献   

15.
The cyclisation of N,N'-diphenyl-o-, m- and p-phenylenediamines and their N,N'-dimethyl derivatives by palladium(II) acetate and UV light separately led to both bis-cyclisation, furnishing indolocarbazoles, and mono-cyclisations with cleavage as well as retention of one substituent, producing substituted carbazoles.  相似文献   

16.
李红  江琳才  蒋雄 《电化学》1996,2(2):149
用电位扫描法和旋转电极法等研究了同液和异液UPD法制备的Pt/Sbad电极对某些C2-醇、醛和羧酸的催化氧化作用,证明该电极对醛基的氧化有显著的催化活性,对羟基氧化的活性很小,对羧基氧化没有活性.跟异液UPD法所制Pt/Sbad电极相比,同液UPD法所制电极的活性较小.讨论了Pt/Sbad电极催化氧化作用的局限性,认为它只能对低电位范围内受毒物抑制的电极反应产生催化效应.通过实验确定了C2-醛类催化氧化反应的决定速度步骤是醛分子在电极表面的转化步骤,而氧化产物则是草酸,据此提出了相应的反应机理  相似文献   

17.
The triorganotin(IV) complex Ph3Sn(OPhMe-2) (1) has been synthesized by the reaction of Ph3SnCl with NaOPhMe-2, while complexes of composition n-Bu3Sn(OPhMe-2) (2) and Me3Sn(OPhMe-2) (3) (where ?OPhMe-2 = ?OC6H4CH3-2) have been obtained from the reaction of n-Bu3SnCl and Me3SnCl with 2-methylphenol in the presence of triethylamine in carbon tetrachloride. The complexes have been characterized by elemental analyses, molar conductance measurements, molecular weight determination, and IR, 1H NMR, 13C NMR, and mass spectral studies. Thermal behavior of the complexes has been studied by TG and DTA techniques. The organotin(IV) complexes have also been screened for antibacterial activity and exhibit appreciable activity. The reactions of the complexes with 3- and 4-cyanopyridines yielded 1 : 1 adducts authenticated by physicochemical and IR and 1H NMR spectral data.  相似文献   

18.
The influence of solvents on the redox behaviour of bistriphenylphosphinomercury perchlorate has been investigated by polarographic, voltammetric and potentiometric methods. The electrode process was found to be reversible in acetonitrile, propylene carbonate, N,N-dimethylformamide and dimethyl sulfoxide. An irreversible process was observed in nitromethane employing the dropping mercury electrode as well as in N,N-dimethylthioformamide and N-methyl-2-thiopyrrolidinone employing the rotating platinum electrode. Half wave potentials and diffusion coefficients have been measured. A linear relationship between theE 1/2 and the donor number (DN) of the solvent has been found for the reversible electrode reactions. Ligand replacement occurs in N,N-dimethylthioformamide and N-methyl-2-thiopyrrolidinone.

Mit 1 Abbildung  相似文献   

19.
A new Ru(III) Schiff base complexes of the type [RuX(EPh3)L] (X = Cl/Br; E = P/As; L = dianion of the Schiff bases were derived by the condensation of 1,4-diformylbenzene with o-aminobenzoic acid/o-aminophenol/o-aminothiophenol in the 1:2 stoichiometric ratio) have been synthesized from the reactions of [RuX3(EPh3)3] with appropriate Schiff base ligands in benzene in the 2:1 stoichiometric ratio. The new complexes have been characterized by analytical, spectral (IR, electronic, 1H, 13C NMR and ESR), magnetic moment and electrochemical studies. An octahedral structure has been tentatively proposed for all these new complexes. All the new complexes have been found to be better catalyst for the oxidation of alcohols using molecular oxygen as co-oxidant at ambient temperature and aryl–aryl coupling reactions. These complexes were also subjected to antibacterial activity studies against Escherichia coli, Aeromonas hydrophilla and Salmonella typhi.  相似文献   

20.
This work reported a comparative analysis of the amperometric responses of antigen‐antibody reactions on two stable chiral surfaces which were modified with 1,2‐diphenylethylenediamine enantiomers. Alpha‐fetoprotein antibody and antigen (anti‐AFP and AFP) were selected as model systems. First, (1R,2R)‐1,2‐diphenylethylenediamine or (1S,2S)‐1,2‐diphenylethylenediamine was modified on the gold surface of the electrode through amide linkage to construct chiral surfaces. Then, anti‐AFP was immobilized on the chiral electrode surface by electrostatic and hydrogen bonding interactions. The electrochemical characteristics of the modified electrodes were studied via cyclic voltammetry. The selective current responses of antigen‐antibody reactions on chiral electrode surfaces for different incubation time and varying AFP concentrations were monitored. The antigen‐antibody reactions were greatly influenced by the chirality of 1,2‐diphenylethylenediamine enantiomers, and the amperometric responses obtained from the (1S,2S)‐1,2‐diphenylethylenediamine modified electrode was obviously stronger than that from the (1R,2R)‐1,2‐diphenylethylenediamine modified electrode. Such work may not only offer valuable reference to the research of chiral drugs, but also help to comprehend the high selectivity of chiral molecular species in biosystems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号