首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In this study, a new way of understanding the shear-thickening phenomenon in self-assembled solutions is introduced. The near- and out-of-equilibrium behavior is investigated in four aqueous micellar solutions containing surfactants of the same family: the alkyltrimethylammonium bromide mixed with an ionic salt at equimolar concentration. Thus, the four molecules of surfactants have the same polar head but different aliphatic chain length containing 12, 14, 16, and 18 carbon atoms. In aqueous solutions, the attractive forces between the surfactant molecules depend on the length of the aliphatic chain, thus, varying this parameter will have a definite influence on the aggregation number, the shape and dimension of the micelles. According to our results, the evolution of the low shear viscosity is affected by the chain length. The rheometric measurements performed in steady and time-dependent flows show that the emergence, the range, and the amplitude of the shear thickening also depend on this parameter. However, in the domain of high shear rates, after reaching the maximum of viscosity, all flow curves superimpose irrespective of the chain length. The rheo-optic measurements confirm the apparition of the shear-induced structure (SIS); this new phase is locally oriented and the chain length affects strongly the micelles orientation and the birefringence intensity. These results undoubtedly demonstrate that the chain length plays an important role in the behavior near equilibrium and under shear flow of the micellar systems. Paper presented at the third Annual European Rheology Conference (AERC 2006) on April 27–29, 2006, Crete, Greece.  相似文献   

2.
Summary Results of measurements of dynamic moduli in parallel superposition of a steady and oscillatory shear flow were compared with different theories.Most of the rheological models which are based on the assumption that the material properties (spectrum of relaxation times) are unaffected by the presence of the steady rates of shear give results incompatible with our experimental results described earlier. From these models the best fit is given by the WJFLMB-model.A much better fit is given by theories based on the assumption that the relaxation spectrum is cut-off at a critical value of the relaxation time depending on the prescribed steady rate of shear. Under certain conditions these theories explain qualitatively the linear relations between the frequency 0, at whichG (, ) = 0 and the steady rate of shear , as we found experimentally for several polymer solutions.
Zusammenfassung Die Ergebnisse von Messungen der dynamischen Moduln bei Superposition einer stationären und einer oszillierenden Scherströmungsk omponente werden mit verschiedenen Theorien verglichen.Die meisten rheologischen Modelle sind auf die Annahme gegründet, daß die Stoffeigenschaften (das Relaxationsspektrum) durch das Vorliegen einer stationären Scherströmung nicht verändert werden. Solche Theorien liefern Ergebnisse, die mit unseren früher beschriebenen Ergebnissen unvereinbar sind. Die beste Übereinstimmung liefert noch das WJFLMB-Modell.Eine wesentlich genauere Anpassung ermöglichen diejenigen Theorien, die auf der Annahme gründen, daß das Relaxationsspektrum bei einem kritischen Wert der Relaxationszeit abgeschnitten wird und daß dieser Wert von der überlagerten stationären Scherströmung abhängt. Unter gewissen Bedingungen erklären diese Theorien zumindest qualitativ die lineare Beziehung zwischen der Frequenz 0, bei welcherG (, ) = 0 wird, und der zugeordneten Schergeschwindigkeit , wie wir sie bei verschiedenen Experimenten gefunden haben.


With 4 figures  相似文献   

3.
4.
Human blood at physiological volume concentration exhibits non-Newtonian and thixotropic properties. The blood flow in the microcirculation is pulsatile, initiated from the heart pulse and can be considered as superposition of two partial flows: a) a steady shear, and b) an oscillatory shear. Until now steady and viscoelastic behavior were separately investigated. Here we present the response to the combination of steady and oscillatory shear for human blood, a high molecular weight aqueous polymer solution (polyacrylamide AP 273E) and an aqueous xanthan gum solution. The polyacrylamide and xanthan solutions are fluids that model the rheological properties of human blood. In general, parameters describing blood viscoelasticity became less pronounced as superimposed steady shear increased, especially at low shear region and by elasticity, associated with reduction in RBC aggregation. The response of polymer solutions to superposition shows qualitative similarities with blood by elasticity, but their quantitative response differed from that of blood. By viscosity another behavior was observed. The superposition effect on viscous component was described by a modified Carreau equation and for the elastic component by an exponential equation.Paper in part presented at the Symposium on Rheology and Computational Fluid Mechanics dedicated to the memory of Prof. A. C. Papanastasiou, University of Cyprus, Nicosia, July 4–5, 1996  相似文献   

5.
The effect of polymer concentration on the conformation of semidilute polymer solutions in extensional flows is studied via the interacting elastic dumbbell model proposed by Hess (1984), here modified to include a nonlinear Warner spring (FENE dumbbell) instead of the linear Hookean spring of the original model. The length of flow-induced conformation changes for the polymer is predicted to be a decreasing function of concentration. In particular, increasing concentration tends to inhibit large extension of the polymer due to polymer-polymer interaction. The specific birefringence is thus proportional to c –1 for semi-dilute solutions, in contrast to dilute solutions where it is known to be independent of concentration. However, the correlation between birefringence and the principle eigenvalue of the velocity gradient tensor, also found originally for dilute solutions, is predicted to occur in the semi-dilute regime. All of these predictions agree qualitatively with experimental observations.Some recent exceptions to the neglect of segmental stretch can be found in Marrucci and Grizzuti (1988), Pearson et al. (1991), Mead et al. (1992).  相似文献   

6.
Simultaneous measurements of the optical and theological response of solutions of highly fractionated polystyrenes have been made, in-situ, to ascertain the connection between flow-induced structure formation and the phenomenon of shear-thickening. Transient and steady state viscosity, dichroism, birefringence and the associated orientation angles were measured in decalin and bromobenzene in the semi-dilute region using a couette device capable of shear rates up to 8,000 s–1. A one-to-one correlation has been found between the occurrence of maxima in the dichroism and minima in the viscosity. While the size and shape of the shear-thickening structures could not be directly determined, results suggest they are intermediate in size between a cluster of entangled chains and a completely phase-separated liquid. For solutions exhibiting shear-thinning alone, no maximum in dichroism was observed, the signal instead showed a saturation behavior at high shear rates. Birefringence was found to be insensitive to the structure formation and attributable to that of the dissolved chains or entanglement regions. The kinetics of the structuring process leading to shear-thickening are instantaneous and completely reversible and there is a concentration window, above and below which only shear-thinning occurs.  相似文献   

7.
The Cox–Merz rule and Laun’s rule are two empirical relations that allow the estimation of steady shear viscosity and first normal stress difference, respectively, using small amplitude oscillatory shear measurements. The validity of the Cox–Merz rule and Laun’s rule imply an agreement between the linear viscoelastic response measured in small amplitude oscillatory shear and the nonlinear response measured in steady shear flow measurements. We show that by using a lesser-known relationship also proposed by Cox and Merz, in conjunction with Laun’s rule, a relationship between the rate-dependent steady shear viscosity and the first normal stress difference can be deduced. The new empirical relation enables a priori estimation of the first normal stress difference using only the steady flow curve (i.e., viscosity vs shear rate data). Comparison of the estimated first normal stress difference with the measured values for six different polymer solutions and melts show that the empirical rule provides values that are in reasonable agreement with measurements over a wide range of shear rates, thus deepening the intriguing connection between linear and nonlinear viscoelastic response of entangled polymeric materials.  相似文献   

8.
The complex flow behaviour of semi-dilute (15 < c/c* < 22.5) polydisperse polyethylene oxide (PEO) aqueous solutions flowing through a planar microfluidic geometry with an 8:1:8 contraction-expansion is systematically studied. The molecular weight and distribution of the PEO samples are analysed by Gel Permeation Chromatography (GPC). Full rheometric characterizations using various techniques including piezoelectric axial vibrator (PAV) measurements at frequencies as high as 6700 Hz are carried out for one semi-dilute PEO solution. Complex flows over a wide range of elasticity numbers (20 ? El ? 120), Weissenberg numbers (7 ? Wi ? 121) and Reynolds numbers (0.08 ? Re ? 4.5) are characterized using micro-particle image velocimetry (μ-PIV) and pressure drop measurements. The evolution of vortex formation and dynamics has been visualized through a step-flow-rate experiment. The effect of El on vortex stability has been studied. Various flow dynamics regimes have been quantified and are presented in a Wi-Re diagram. The experimental results reveal that the elastic behaviour of polymer solutions is very sensitive to high molecular weight polymer in the polydisperse polymer samples, and the contraction ratio and the aspect ratio of flow geometry are the important design parameters in controlling the non-linear dynamics of semi-dilute polymer solutions in microfluidics.  相似文献   

9.
Light scattering calculations based on Anomalous Diffraction Theory (AD), Rayleigh spheroids, and flexible macromolecules are used to propose a phenomenological explanation for the relationship between shear-thickening and structure formation in polymer solutions. Quantitative comparisons are made to experimental data for the rheo-optical behavior of fractionated polystyrene solutions presented in part I of this paper. Results from the ADA calculations suggest that the viscosity and dichroism behavior can be attributed to the production and growth of micron-size, optically isotropic structures during flow. The saturation dichroism behavior exhibited by the solutions which shear thin can be attributed to the formation of entanglement regions which achieve a fixed size and act as Rayleigh spheroids in their scattering behavior. The magnitude and shear rate dependence of the observed birefringence can be accounted for on the basis of the non-linear, flexible macromolecule model, implying that birefringence is governed by the polymer chains remaining in solution which do not take part in the structure formation. The latter result is consistent with the experimental observation that the birefringence dependence on shear rate is the same whether the solution exhibits shear thickening or shear thinning in its viscosity behavior.  相似文献   

10.
An algorithm is derived for calculating flow-induced birefringence using a bead-spring model with and without excluded volume effects. The simulation results for the bead-spring model compare well with experimental results for stress and birefringence in extensional flows of dilute solutions of polystyrene molecular weight 2 million in a filament-stretching device in both “theta” and “good” solvents (Orr and Sridhar 1999; Sridhar et al. 2000). In a “good” solvent, both stress and birefringence rise much more rapidly with strain than in a “theta” solvent, making extensional rheology a very sensitive indicator of solvent quality. Received: 7 December 1999 Accepted: 23 May 2000  相似文献   

11.
The steady and dynamic shear properties of two non-aqueous drag-reducers (a medium molecular weight polyisobutylene and a commercial organic drag-reducer) in kerosene solutions over a wide range of temperature and concentration were presented. The intrinsic and zero-shear viscosity results were used to identify the concentrate regimes of these solutions. A characteristic time constant λ0, which was based on the spring-bead model for dilute solutions, was employed as the scaling parameter for both steady-shear and dynamic data over a wide range of concentration and temperature. The inadequacy of the Graessley reduced-variable method in the dilute region was illustrated. The shear-thinning behaviour of these polymer solutions could be described by the Carreau model. The dynamic data followed the Zimm and Rouse-like behaviour in the low and high frequency limits. The Cox-Merz rule was obeyed in the low shear rate and frequency regions. The Carreau and the zero-frequency Maxwell time constants appeared to be related to λ0 by a constant factor over a wide range of polymer concentrations. The finding provides a method for extrapolating viscoelastic information into the drag reduction regime, and could be useful for interpretation of drag reduction results.  相似文献   

12.
The orthogonal superposition of small and large amplitude oscillations upon steady shear flow of elastic fluids has been considered. Theoretical results, obtained by numerical methods, are based on the Leonov viscoelastic constitutive equation. Steady-state components, amplitudes and phase angles of the oscillatory components of the shear stress, the first and second normal stress differences as functions of shear rate, deformation amplitude and frequency have been calculated. These oscillatory components include the first and third harmonic of the shear stresses and the second harmonic of the normal stresses. In the case of small amplitude superposition, the effect of the steady shear flow upon the frequency-dependent storage modulus and dynamic viscosity has been determined and compared with experimental data available in literature for polymeric solutions. The predicted results have been found to be in fair agreement with the experimental data at low shear rates and only in qualitative agreement at high shear rates and low frequencies. A comparison of the present theoretical results has also been made with the predictions of other theories.In the case of large amplitude superposition, the effect of oscillations upon the steady shear flow characteristics has been determined, indicating that the orthogonal superposition has less influence on the steady state shear stresses and the first difference of normal stresses than the parallel superposition. However, in the orthogonal superposition a more pronounced influence has been observed for the second difference of normal stresses.  相似文献   

13.
 The Larson-Doi (LD) polydomain model is used to simulate orientation development along the centerline of slit-expansion and slit-contraction flows of liquid crystalline polymers (LCPs). Orientation is computed using the LD structural evolution equations, subject to an imposed velocity field that accounts for the spatial variation of both shear and extension rates characteristic of this class of flows. Computed axial distributions of orientation averaged through the sample thickness are qualitatively similar to birefringence and X-ray scattering measurements of molecular orientation in similar flows of lyotropic and thermotropic LCPs. In slit-expansion flows, the simulations predict a 90 flip in orientation direction near the midplane due to transverse stretching in the expansion region. Far away from the midplane where shear gradients dominate, orientation remains primarily along the flow direction. Within the LD model, tumbling and flow aligning materials respond in a qualitatively similar manner to mixed shear and extension, although tumbling materials are systematically more susceptible to the effects of extension. Received: 22 October 1999/Accepted: 13 January 2000  相似文献   

14.
In this article, we present a device for rapid quenching of elongated polymer melts. The tool is an accessory to the uniaxial elongational rheometer RME of Meissner and Hostettler. It is intended to be used for microscopic and other investigations of stretched polymers. The device allows us to solidify a polymer melt by pouring liquid nitrogen on it and to cut it at the nearly same instant of time. Then the sample can be easily removed from the stretching apparatus. Solving the heat diffusion equation for a polymer melt, which is cooled by liquid nitrogen, we theoretically estimate the quenching time of this method. To demonstrate that this quenching procedure indeed rapidly cools a polymer melt, the stress birefringence of elongated and subsequently quenched polystyrene melts is measured and the stress-optical coefficient C is determined. The experimental value of the stress-optical coefficient is |C|= 4.65×10−9 Pa−1, which agrees well with the data in literature. Using this tool for elongation experiments with the RME, polymer melts can be solidified in between approximately 0.2 and 2.0 s, depending on the thickness of the sample.  相似文献   

15.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   

16.
17.
Hydrodynamic interactions on dilute solutions of spherical beads under shear flow are calculated with the method of induced forces. The Navier-Stokes equation is considered in the Stokes approximation. Hydrodynamic interactions cause the drag to be anisotropic in space.Numerical solutions are obtained for the added stress, caused by polymeric molecules in solution in a narrow channel under shear flow. The polymeric molecules are considered as Hookean spring-dumbbells.Slip velocity and the effective viscosity are obtained taking different dumbbells' bead radii. Transversal migration in the channel is obtained for different bead radii.  相似文献   

18.
K. Kirschke 《Rheologica Acta》1982,21(4-5):508-510
Generally solutions of high polymers show a shear-rate dependent flow behaviour and so the properties of these fluids have to be measured under conditions of shear corresponding to the practical service. Capillary viscometry is suitable for achieving high rates of shear but relaxation phenomena can effect the results, which is proved experimentally. The flow behaviour of a lubricant blended with a high polymer additive is measured and a graphical representation of the dependence of flow behaviour on temperature and rate of shear is recommended.  相似文献   

19.
A semi-empirical spectrum model is proposed to describe the experimental data of the steady shear properties of a Shengli waxy crude oil near its gel point, where sophisticated structural effects become apparent due to the existence of waxy crystals in the crude oil. The model, consisting of a time spectrum, can well fit the steady shear viscosities of the waxy crude oil over the whole experimental shear rate region from 10-4 to 102 s- 1. Two other experiments on complex fluids reported recently in the literature are also well described by this model demonstrating the applicability and accuracy of the model.  相似文献   

20.
A two-stage Tikhonov regularisation procedure has been used to obtain rheological properties for a high internal phase emulsion from gap-dependent steady-state parallel plate shear data. This method is beneficial in that it can convert the steady shear data into rheological property functions. The built-in regularisation parameters of the method are able to keep noise amplification under control. The two-stage method is able to obtain not only the shear stress–shear rate function but also the apparent slip velocity as a function of wall shear stress. The method is such that it obtains the rheological functions over the maximum range of shear rate covered by the data. The results obtained using the new method are compared to those obtained using the vane geometry with good agreement being observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号