首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
The m/z 44 appearance energies for five primary amines have been measured by threshold photoionization mass spectrometry. Following an analysis of the thermochemistry associated with these unimolecular fragmentations, a value of 665.1 +/- 1.4 kJ mol(-1) is obtained for the 298 K heat of formation for the ethylidenimmonium cation (CH(3)CH=NH(2)(+)). When combined with high-level ab initio calculations, this results in absolute proton affinities of 906.4 +/- 2.7 and 909.2 +/- 2.8 kJ mol(-1) for the ethylidenimines E-CH(3)CH=NH and Z-CH(3)CH=NH, respectively.  相似文献   

2.
Thermochemical parameters of hydroxymethylene (HC:OH) and 1-hydroxyethylidene (CH3C:OH) were evaluated by using coupled-cluster, CCSD(T), theory, in conjunction with the augmented correlation consistent, aug-cc-pVnZ, basis sets, with n = D, T, Q, and 5, extrapolated to the complete basis set limit. The predicted value at 298 K for Delta Hf(CH2O) is -26.0 +/- 1 kcal/mol, as compared to an experimental value of -25.98 +/- 0.01 kcal/mol, and for Delta Hf(CH:OH) it is 26.1 +/- 1 kcal/mol. The hydroxymethylene-formaldehyde energy gap is 52.1 +/- 0.5 kcal/mol, the singlet-triplet separation of hydroxymethylene is Delta E(ST)(HC:OH) = 25.3 +/- 0.5 kcal/mol, the proton affinity is PA(HC:OH) = 222.5 +/- 0.5 kcal/mol, and the ionization energy is IEa(HC:OH) = 8.91 +/- 0.04 eV. The predicted value at 298 K for Delta Hf(CH3CHO) is -39.1 +/- 1 kcal/mol as compared to an experimental value of -40.80 +/- 0.35 kcal/mol, and for Delta Hf(CH3C:OH) it is 11.2 +/- 1 kcal/mol. The hydroxyethylidene-acetaldehyde energy gap is 50.6 +/- 0.5 kcal/mol, the singlet-triplet separation of 1-hydroxyethylidene is Delta E(ST)(CH3C:OH) = 30.5 +/- 0.5 kcal/mol, the proton affinity is PA(CH3C:OH) = 234.7 +/- 0.5 kcal/mol, and the ionization energy is IEa(CH3C:OH) = 8.18 +/- 0.04 eV. The calculated energy differences between the carbene and aldehyde isomers, and, thus, the heats of formation of the carbenes, differ from the experimental values by 2.5 kcal/mol.  相似文献   

3.
Photoionization mass spectrometry has been used to measure appearance energies for immonium cation formation from 25 alkyl amine precursors. A number of the unimolecular fragmentation processes are shown to involve excess energy at threshold so that, of the 11 different cations investigated, it is only possible to derive reliable 298 K heats of formation for CH2=NH2+ (749.0 +/- 0.9 kJ mol(-1)), CH(3)CH=NH2+ (666.1 +/- 1.1 kJ mol(-1)), C(2)H(5)CH=NH2+ (636.8 +/- 2.5 kJ mol(-1)), CH2=NH(CH3)+ (706.1 +/- 1.0 kJ mol(-1)), CH2=NH(C(2)H(5))+ (668.4 +/- 1.3 kJ mol(-1)), and CH2=N(CH3)2+ (668.0 +/- 2.5 kJ mol(-1)). When these are compared to those calculated by the G3, G3B3, G2, G2(MP2), CBS-APNO, and W1U composite ab initio methods, it is found that the smallest mean absolute deviation of 1.2 +/- 0.8 kJ mol(-1) is obtained from the G2 calculations.  相似文献   

4.
The dissociative photoionization of energy selected methanol isotopologue (CH(3)OH, CD(3)OH, CH(3)OD and CD(3)OD) cations was investigated using imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy. The first dissociation is an H/D-atom loss from the carbon, also confirmed by partial deuteration. Somewhat above 12 eV, a parallel H(2)-loss channel weakly asserts itself. At photon energies above 15 eV, in a consecutive hydrogen molecule loss to the first H-atom loss, the formation of CHO(+)/CDO(+) dominates as opposed to COH(+)/COD(+) formation. We see little evidence for H-atom scrambling in these processes. In the photon energy range corresponding to the B[combining tilde] and C[combining tilde] ion states, a hydroxyl radical loss appears yielding CH(3)(+)/CD(3)(+). Based on the branching ratios, statistical considerations and ab initio calculations, this process is confirmed to take place on the first electronically excited ?(2)A' ion state. Uncharacteristically, internal conversion is outcompeted by unimolecular dissociation due to the apparently weak Renner-Teller-like coupling between the X[combining tilde] and the ? ion states. The experimental 0 K appearance energies of the ions CH(2)OH(+), CD(2)OH(+), CH(2)OD(+) and CD(2)OD(+) are measured to be 11.646 ± 0.003 eV, 11.739 ± 0.003 eV, 11.642 ± 0.003 eV and 11.737 ± 0.003 eV, respectively. The E(0)(CH(2)OH(+)) = 11.6454 ± 0.0017 eV was obtained based on the independently measured isotopologue results and calculated zero point effects. The 0 K heat of formation of CH(2)OH(+), protonated formaldehyde, was determined to be 717.7 ± 0.7 kJ mol(-1). This yields a 0 K heat of formation of CH(2)OH of -11.1 ± 0.9 kJ mol(-1) and an experimental 298 K proton affinity of formaldehyde of 711.6 ± 0.8 kJ mol(-1). The reverse barrier to homonuclear H(2)-loss from CH(3)OH(+) is determined to be 36 kJ mol(-1), whereas for heteronuclear H(2)-loss from CH(2)OH(+) it is found to be 210 kJ mol(-1).  相似文献   

5.
The dissociative photoionization onsets for the formation of the propionyl ion (C(2)H(5)CO(+)) and the acetyl ion (CH(3)CO(+)) were measured from energy selected butanone and 2,3-pentanedione ions using the technique of threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. Ion time-of-flight (TOF) mass spectra recorded as a function of the ion internal energy permitted the construction of breakdown diagrams, which are the fractional abundances of ions as a function of the photon energy. The fitting of these diagrams with the statistical theory of unimolecular decay permitted the extraction of the 0 K dissociation limits of the first and second dissociation channels. This procedure was tested using the known energetics of the higher energy dissociation channel in butanone that produced the acetyl ion and the ethyl radical. By combining the measured dissociative photoionization onsets with the well-established heats of formation of CH(3)(*), CH(3)CO(+), CH(3)CO(*), and butanone, the 298 K heats of formation, Delta(f)H degrees (298K), of the propionyl ion and radical were determined to be 618.6 +/- 1.4 and -31.7 +/- 3.4 kJ/mol, respectively, and Delta(f)H degrees (298K)[2,3-pentanedione] was determined to be -343.7 +/- 2.5 kJ/mol. This is the first experimentally determined value for the heat of formation for 2,3-pentanedione. Ab initio calculations at the Weizmann-1 (W1) level of theory predict Delta(f)H degrees (298K) values for the propionyl ion and radical of 617.9 and -33.3 kJ/mol, respectively, in excellent agreement with the measured values.  相似文献   

6.
Alkylamines (RCH(2)NH(2), R = H, CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7)) have been investigated by dissociative photoionization by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). The 0 K dissociation limits (9.754 +/- 0.008, 9.721 +/- 0.008, 9.702 +/- 0.012, and 9.668 +/- 0.012 eV for R = CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7), respectively) have been determined by preparing energy-selected ions and collecting the fractional abundances of parent and daughter ions. All alkylamine cations produce the methylenimmonium ion, CH(2)NH(2)+, and the corresponding alkyl free radical. Two isodesmic reaction networks have also been constructed. The first one consists of the alkylamine parent molecules, and the other of the alkyl radical photofragments. Reaction heats within the isodesmic networks have been calculated at the CBS-APNO and W1U levels of theory. The two networks are connected by the TPEPICO dissociation energies. The heats of formation of the amines and the alkyl free radicals are then obtained by a modified least-squares fit to minimize the discrepancy between the TPEPICO and the ab initio values. The analysis of the fit reveals that the previous experimental heats of formation are largely accurate, but certain revisions are suggested. Thus, Delta(f)Ho(298K)[CH(3)NH(2)(g)] = -21.8 +/- 1.5 kJ mol-1, Delta(f)Ho(298K)[C(2)H(5)NH(2)(g)] = -50.1 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)NH(2)(g)] = -70.8 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)*] = 101.3 +/- 1 kJ mol(-1), and Delta(f)Ho(298K)[i-C(3)H(7)*] = 88.5 +/- 1 kJ mol(-1). The TPEPICO and the ab initio results for butylamine do not agree within 1 kJ mol-1; therefore, no new heat of formation is proposed for butylamine. It is nevertheless indicated that the previous experimental heats of formation of methylamine, propylamine, butylamine, and isobutylamine may have been systematically underestimated. On the other hand, the error in the ethyl radical heat of formation is found to be overestimated and can be decreased to +/- 1 kJ mol(-1); thus, Delta(f)Ho(298K)[C(2)H(5).] = 120.7 +/- 1 kJ mol(-1). On the basis of the data analysis, the heat of formation of the methylenimmonium ion is confirmed to be Delta(f)Ho(298K)[CH(2)NH(2)+] = 750.3 +/- 1 kJ mol(-1).  相似文献   

7.
Thermochemical parameters of three C(2)H(5)O* radicals derived from ethanol were reevaluated using coupled-cluster theory CCSD(T) calculations, with the aug-cc-pVnZ (n = D, T, Q) basis sets, that allow the CC energies to be extrapolated at the CBS limit. Theoretical results obtained for methanol and two CH(3)O* radicals were found to agree within +/-0.5 kcal/mol with the experiment values. A set of consistent values was determined for ethanol and its radicals: (a) heats of formation (298 K) DeltaHf(C(2)H(5)OH) = -56.4 +/- 0.8 kcal/mol (exptl: -56.21 +/- 0.12 kcal/mol), DeltaHf(CH(3)C*HOH) = -13.1 +/- 0.8 kcal/mol, DeltaHf(C*H(2)CH(2)OH) = -6.2 +/- 0.8 kcal/mol, and DeltaHf(CH(3)CH(2)O*) = -2.7 +/- 0.8 kcal/mol; (b) bond dissociation energies (BDEs) of ethanol (0 K) BDE(CH(3)CHOH-H) = 93.9 +/- 0.8 kcal/mol, BDE(CH(2)CH(2)OH-H) = 100.6 +/- 0.8 kcal/mol, and BDE(CH(3)CH(2)O-H) = 104.5 +/- 0.8 kcal/mol. The present results support the experimental ionization energies and electron affinities of the radicals, and appearance energy of (CH(3)CHOH+) cation. Beta-C-C bond scission in the ethoxy radical, CH(3)CH2O*, leading to the formation of C*H3 and CH(2)=O, is characterized by a C-C bond energy of 9.6 kcal/mol at 0 K, a zero-point-corrected energy barrier of E0++ = 17.2 kcal/mol, an activation energy of Ea = 18.0 kcal/mol and a high-pressure thermal rate coefficient of k(infinity)(298 K) = 3.9 s(-1), including a tunneling correction. The latter value is in excellent agreement with the value of 5.2 s(-1) from the most recent experimental kinetic data. Using RRKM theory, we obtain a general rate expression of k(T,p) = 1.26 x 10(9)p(0.793) exp(-15.5/RT) s(-1) in the temperature range (T) from 198 to 1998 K and pressure range (p) from 0.1 to 8360.1 Torr with N2 as the collision partners, where k(298 K, 760 Torr) = 2.7 s(-1), without tunneling and k = 3.2 s(-1) with the tunneling correction. Evidence is provided that heavy atom tunneling can play a role in the rate constant for beta-C-C bond scission in alkoxy radicals.  相似文献   

8.
Several intermediates for the CH(3)SH + OH(*) --> CH(3)S(*) + H(2)O reaction were identified using MP2(full) 6-311+g(2df,p) ab initio calculations. An adduct, CH(3)S(H)OH(*), I, with electronic energy 13.63 kJ mol(-1) lower than the reactants, and a transition state, II(double dagger), located 5.14 kJ mol(-1) above I, are identified as the entrance channel for an addition-elimination reaction mechanism. After adding zero-point and thermal energies, DeltaH(r,298) ( degrees )(reactants --> I) = -4.85 kJ mol(-1) and DeltaH(298) (double dagger)(I --> II(double dagger)) = +0.10 kJ mol(-1), which indicates that the potential energy surface is broad and flat near the transition state. The calculated imaginary vibrational frequency of the transition state, 62i cm(-1), is also consistent with an addition-elimination mechanism. These calculations are consistent with experimental observations of the OH(*) + CH(3)SH reaction that favored an addition-elimination mechanism rather than direct hydrogen atom abstraction. An alternative reaction, CH(3)SH + OH(*) --> CH(3)SOH + H(*), with DeltaH(r,298) ( degrees ) = +56.94 kJ mol(-1) was also studied, leading to a determination of DeltaH(f,298) ( degrees )(CH(3)SOH) = -149.8 kJ mol(-1).  相似文献   

9.
Energy-resolved, competitive threshold collision-induced dissociation (TCID) methods are used to measure the gas-phase acidities of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid relative to hydrogen cyanide, hydrogen sulfide, and the hydroperoxyl radical using guided ion beam tandem mass spectrometry. The gas-phase acidities of Delta(acid)H298(C6H5OH) = 1456 +/- 4 kJ/mol, Delta(acid)H298(3-CH3C6H4OH) = 1457 +/- 5 kJ/mol, Delta(acid)H298(2,4,6-(CH3)3C6H2OH) = 1456 +/- 4 kJ/mol, and Delta(acid)H298(CH3COOH) = 1457 +/- 6 kJ/mol are determined. The O-H bond dissociation enthalpy of D298(C6H5O-H) = 361 +/- 4 kJ/mol is derived using the previously published experimental electron affinity for C6H5O, and thermochemical values for the other species are reported. A comparison of the new TCID values with both experimental and theoretical values from the literature is presented.  相似文献   

10.
Energy selected mono-, di- and trimethylamine ions were prepared by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). Below 13 eV, the main dissociative photoionization path of these molecules is hydrogen atom loss. The ion time-of-flight (TOF) distributions and breakdown diagrams for H loss are analyzed in terms of the statistical RRKM theory, which includes tunneling. Experimental evidence, supported by quantum chemical calculations, indicates that the reverse barrier along the H loss potential energy curve for monomethylamine is 1.8 +/- 0.6 kJ mol(-1). Accurate dissociation onset energies are derived from the TOF simulation, and from this analysis we conclude that Delta(f)H degrees (298K)[CH(2)NH(2)(+)] = 750.4 +/- 1.3 kJ mol(-1) and Delta(f)H degrees (298K)[CH(2)NH(CH(3))(+)] = 710.9 +/- 2.8 kJ mol(-1). Quantum chemical calculations at the G3, G3B3, CBS-APNO and W1U levels are extensively used to support the experimental data. The comparison between experimental and ab initio isodesmic reaction heats also suggests that Delta(f)H degrees (298K)[N(CH(3))(3)] = -27.2 +/- 2 kJ mol(-1), and that the dimethylamine ionization energy is 8.32 +/- 0.03 eV, both of which are in slight disagreement with previous experimental values. Above 13 eV photon energy, additional dissociation channels appear besides the H atom loss, such as a sequential C(2)H(4) loss from trimethylamine for which a dissociation mechanism is proposed.  相似文献   

11.
Energy selected trimethyl phosphine ions were prepared by threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. This ion dissociates via H, CH(3), and CH(4) loss, the latter two involving hydrogen transfer steps. The ion time-of-flight distribution and the breakdown diagram are analyzed in terms of the statistical RRKM theory, which includes tunneling. Ab initio and DFT calculations provide the vibrational frequencies required for the RRKM modeling. CH(3) loss could produce both the P(CH(3))(2)(+) by a simple bond dissociation step, and the more stable HP(CH(2))CH(3)(+) ion by a hydrogen transfer step. Quantum chemical calculations are extensively used to uncover the reaction scheme, and they strongly suggest that the latter product is exclusively formed via an isomerization step in the energy range of the experiment. The data analysis, which includes modeling with the trimethyl phosphine thermal energy distribution, provides accurate onset energies for both H (E(0K) = 1024.1 +/- 3.5 kJ/mol) and CH(3) (E(0K) = 1024.8 +/- 3.5 kJ/mol) loss reactions. From this analysis, we conclude that the Delta(f)H(298K) degrees [HP(CH(2))(CH(3))(+)] = 783 +/- 8 kJ/mol and Delta(f)H(298K) degrees [P(CH(2))(CH(3))(2)(+)] = 711 +/- 8 kJ/mol.  相似文献   

12.
The unimolecular dissociation of CH3OOH is investigated by exciting the molecule in the region of its 5nu(OH) band and probing the resulting OH fragments using laser-induced fluorescence. The measured OH fragment rotational and translational energies are used to determine the CH3O-OH bond dissociation energy, which we estimate to be approximately 42.6+/-1 kcal/mol. Combining this value with the known heats of formation of the fragments also gives an estimate for the heat of formation of CH3OOH which at 0 K we determine to be deltaH(f)0=-27+/-1 kcal/mol. This experimental value is in good agreement with the results of ab initio calculations carried out at the CCSD(T)/complete basis set limit which finds the heat of formation of CH3OOH at 0 K to be deltaH(f)0=-27.3 kcal/mol.  相似文献   

13.
The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).  相似文献   

14.
The reaction of 1-methylvinoxy radicals, CH3COCH2, with molecular oxygen has been investigated by experimental and theoretical methods as a function of temperature (291-520 K) and pressure (0.042-10 bar He). Experiments have been performed by laser photolysis coupled to a detection of 1-methylvinoxy radicals by laser-induced fluorescence LIF. The potential energy surface calculations were performed using ab inito molecular orbital theory at the G3MP2B3 and CBSQB3 level of theory based on the density function theory optimized geometries. Derived molecular properties of the characteristic points of the potential energy surface were used to describe the mechanism and kinetics of the reaction under investigation. At 295 K, no pressure dependence of the rate constant for the association reaction has been observed: k(1,298K) = (1.18 +/- 0.04) x 10(-12) cm3 s(-1). Biexponential decays have been observed in the temperature range 459-520 K and have been interpreted as an equilibrium reaction. The temperature-dependent equilibrium constants have been extracted from these decays and a standard reaction enthalpy of deltaH(r,298K) = -105.0 +/- 2.0 kJ mol(-1) and entropy of deltaS(r,298K) = -143.0 +/- 4.0 J mol(-1) K(-1) were derived, in excellent agreement with the theoretical results. Consistent heats of formation for the vinoxy and the 1-methylvinoxy radical as well as their O2 adducts are recommended based on our complementary experimental and theoretical study deltaH(f,298K) = 13.0 +/- 2.0, -32. 9+/- 2.0, -85.9 +/- 4.0, and -142.1 +/- 4.0 kJ mol(-1) for CH2CHO, CH3COCH2 radicals, and their adducts, respectively.  相似文献   

15.
The 0 K dissociative ionization onsets of C2H3X --> C2H3(+) + X (X = Cl, I) are measured by threshold photoelectron-photoion coincidence spectroscopy. The heats of formation of C2H3Cl (Delta H(f,0K)(0) = 30.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 22.6 +/- 3.2 kJ mol(-1)) and C2H3I (Delta(H f,0K)(0) = 140.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 131.2 +/- 3.2 kJ mol(-1)) and C- X bond dissociation enthalpies as well as those of their ions are determined. The data help resolve a longstanding discrepancy among experimental values of the vinyl chloride heat of formation, which now agrees with the latest theoretical determination. The reported vinyl iodide heat of formation is the first reliable experimental determination. Additionally, the adiabatic ionization energy of C2H3I (9.32 +/- 0.01 eV) is measured by threshold photoelectron spectroscopy.  相似文献   

16.
The goal of this work was to obtain a detailed insight on the gas-phase protonation energetic of adenosine using both mass spectrometric experiments and quantum chemical calculations. The experimental approach used the extended kinetic method with nanoelectrospray ionization and collision-induced dissociation tandem mass spectrometry. This method provides experimental values for proton affinity, PA(adenosine) = 979 +/- 1 kJ.mol (-1), and for the "protonation entropy", Delta p S degrees (adenosine) = S degrees (adenosineH (+)) - S degrees (adenosine) = -5 +/- 5 J.mol (-1).K (-1). The corresponding gas-phase basicity is consequently equal to: GB(adenosine) = 945 +/- 2 kJ.mol (-1) at 298K. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of 974 kJ.mol (-1) after consideration of isodesmic proton transfer reactions with pyridine as the reference base. Moreover, computations clearly showed that N3 is the most favorable protonation site for adenosine, due to a strong internal hydrogen bond involving the hydroxyl group at the 2' position of the ribose sugar moiety, unlike observations for adenine and 2'-deoxyadenosine, where protonation occurs on N1. The existence of negligible protonation entropy is confirmed by calculations (theoretical Delta p S degrees (adenosine) approximately -2/-3 J.mol (-1).K (-1)) including conformational analysis and entropy of hindered rotations. Thus, the calculated protonation thermochemical properties are in good agreement with our experimental measurements. It may be noted that the new PA value is approximately 10 kJ.mol (-1) lower than the one reported in the National Institute of Standards and Technology (NIST) database, thus pointing to a correction of the tabulated protonation thermochemistry of adenosine.  相似文献   

17.
In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(?)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(?)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f,?gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f,?liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f,?gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f,?liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.  相似文献   

18.
Arrhenius rate expressions were determined for beta-scission of phenoxyl radical from 1-phenyl-2-phenoxyethanol-1-yl, PhC*(OH)CH2OPh (V). Ketyl radical V was competitively trapped by thiophenol to yield PhCH(OH)CH2OPh in competition with beta-scission to yield phenoxyl radical and acetophenone. A basis rate expression for hydrogen atom abstraction by sec-phenethyl alcohol, PhC*(OH)CH3, from thiophenol, log(k(abs)/M(-1) s(-1)) = (8.88 +/- 0.24) - (6.07 +/- 0.34)/theta, theta = 2.303RT, was determined by competing hydrogen atom abstraction with radical self-termination. Self-termination rates for PhC*(OH)CH3 were calculated using the Smoluchowski equation employing experimental diffusion coefficients of the parent alcohol, PhCH(OH)CH3, as a model for the radical. The hydrogen abstraction basis reaction was employed to determine the activation barrier for the beta-scission of phenoxyl from 1-phenyl-2-phenoxyethanol-1-yl (V): log(k beta)/s(-1)) = (12.85 +/- 0.22) - (15.06 +/- 0.38)/theta, k beta (298 K) ca. (64.0 s(-1) in benzene), and log(k beta /s(-1)) = (12.50 +/- 0.18) - (14.46 +/- 0.30)/theta, k beta (298 K) = 78.7 s(-1) in benzene containing 0.8 M 2-propanol. B3LYP/cc-PVTZ electronic structure calculations predict that intramolecular hydrogen bonding between the alpha-OH and the -OPh leaving group of ketyl radical (V) stabilizes both ground- and transition-state structures. The computed activation barrier, 14.9 kcal/mol, is in good agreement with the experimental activation barrier.  相似文献   

19.
The heats of formation of saturated and unsaturated diaminocarbenes (imadazol(in)-2-ylidenes) have been calculated by using high levels of ab initio electronic structure theory. The calculations were done at the coupled cluster level through noniterative triple excitations with augmented correlation consistent basis sets up through quadruple. In addition, four other corrections were applied to the frozen core atomization energies: (1) a zero point vibrational correction; (2) a core/valence correlation correction; (3) a scalar relativistic correction; (4) a first-order atomic spin-orbit correction. The value of DeltaHf( 298) for the unsaturated carbene 1 is calculated to be 56.4 kcal/mol. The value of DeltaHf( 298) for the unsaturated triplet carbene (3)1 is calculated to be 142.8 kcal/mol, giving a singlet-triplet splitting of 86.4 kcal/mol. Addition of a proton to 1 forms 3 with DeltaHf( 298)(3) = 171.6 kcal/mol with a proton affinity for 1 of 250.5 kcal/mol at 298 K. Addition of a hydrogen atom to 1 forms 4 with DeltaHf( 298)(4) = 72.7 kcal/mol and a C-H bond energy of 35.8 kcal/mol at 298 K. Addition of H- to 1 gives 5 with DeltaHf( 298)(5) = 81.2 kcal/mol and 5 is not stable with respect to loss of an electron to form 4. Addition of H2 to the carbene center forms 6 with DeltaHf( 298)(6) = 41.5 kcal/mol and a heat of hydrogenation at 298 K of -14.9 kcal/mol. The value of DeltaHf( 298) for the saturated carbene 7 (obtained by adding H2 to the C=C bond of 1) is 47.4 kcal/mol. Hydrogenation of 7 to form the fully saturated imidazolidine, 8, gives DeltaHf( 298)(8) = 14.8 kcal/mol and a heat of hydrogenation at 298 K of -32.6 kcal/mol. The estimated error bars for the calculated heats of formation are +/-1.0 kcal/mol.  相似文献   

20.
The sequential ethene (C2H4) loss channels of energy-selected ethylphosphine ions have been studied using threshold photoelectron photoion coincidence (TPEPICO) spectroscopy in which ion time-of-flight (TOF) distributions are recorded as a function of the photon energy. The ion TOF distributions and breakdown diagrams have been modeled in terms of the statistical RRKM theory for unimolecular reactions, providing 0 K dissociation onsets, E0, for the ethene loss channels. Three RRKM curves were used to model the five measurements, since two of the reactions differ only by the internal energy of the parent ion. This series of dissociations provides a detailed check of the calculation of the product energy distribution for sequential reactions. From the determined E0's, the heats of formation of several ethylphosphine neutrals and ions have been determined: Delta(f)H degrees 298K[P(C(2)H(5))3] = -152.7 +/- 2.8 kJ/mol, Delta(f)H degrees 298K[P(C(2)H(5))3+] = 571.6 +/- 4.0 kJ/mol, Delta(f)H degrees 298K[HP(C(2)H(5))2] = -89.6 +/- 2.1 kJ/mol, Delta(f)H degrees 298K[HP(C(2)H(5))2+] = 669.9 +/- 2.5 kJ/mol, Delta(f)H degrees 298K[H(2)PC(2)H(5)] = -36.5 +/- 1.5 kJ/mol, Delta(f)H degrees 298K[H(2)PC(2)H(5)+] = 784.0 +/- 1.9 kJ/mol. These values have been supported by G2 and G3 calculations using isodesmic reactions. Coupled cluster calculations have been used to show that the C2H4 loss channel, which involves a hydrogen transfer step, proceeds without a reverse energy barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号