首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Efficient aerobic oxidation of alcohols was developed via a biomimetic catalytic system. The principle for this aerobic oxidation is reminiscent of biological oxidation of alcohols via the respiratory chain and involves selective electron/proton transfer. A substrate-selective catalyst (ruthenium complex 1) dehydrogenates the alcohol, and the hydrogens abstracted are transferred to an electron-rich quinone (4b). The hydroquinone thus formed is continuously reoxidized by air with the aid of an oxygen-activating Co[bond]salen type complex (6). Most alcohols are oxidized to ketones in high yield and selectivity within 1-2 h, and the catalytic system tolerates a wide range of O(2) concentrations without being deactivated. Compared to other ruthenium-catalyzed aerobic oxidations this new catalytic system has high turnover frequency (TOF).  相似文献   

2.
The systematic oxidation reactions of a wide range of alcohols have been carried out by using an iron porphyrin complex in order to understand their relation to cytochrome P-450 enzymes and to have a practical application to organic synthesis. The iron porphyrin complex catalyzed efficiently alcohol oxidation to the respective carbonyl compound via a high-valent iron-oxo porphyrin intermediate ((Porp)Fe=O+). Several mechanistic studies such as isotope 18O labeling, deuterium isotope effect, linear free energy relationship, and ring-opening of radical clock substrate, have suggested that the alcohol is oxidized by a sequence of reactions involving an alpha-hydroxyalkyl radical intermediate and oxygen rebound to form the gem-diol, dehydration of which yields the carbonyl compounds. Moreover, it has been proposed that a two-state reactivity mechanism can also be adopted for alcohol oxidation reactions in iron porphyrin model systems as exhibited by P-450 enzymes.  相似文献   

3.
胡玉  侯震山 《化学进展》2007,19(9):1267-1274
由于超临界二氧化碳(SCCO2)具有稳定、安全、不燃、清洁无毒、粘度小、扩散快、可压缩的特殊性质,所以使得超临界二氧化碳非常适合作为催化反应的绿色溶剂.除此之外,多种气体在超临界二氧化碳中的溶解度很高,这对于那些受传质阻碍和易引起安全隐患的气相反应来讲,使用SCCO2作为替代的反应溶剂具有重要的价值。值得指出的是:如果选择超临界二氧化碳作为氧化反应的溶剂,其自身不会发生反应而产生副产物,从而容易得到清洁的产物。本文主要讨论了超临界二氧化碳作为反应介质对醇、烯烃和烷烃等选择氧化反应的影响,通过与传统溶剂比较可以看出超临界二氧化碳作为氧化反应溶剂的优势,对近几年来以分子氧为氧化剂,以超临界二氧化碳为介质的催化选择氧化的反应体系作了综述,并对未来的发展提出了展望。  相似文献   

4.
A polymer–ruthenium complex Ru(pbbp)(pydic) was synthesized from the reaction of poly-2,6-bis(benzimidazolyl)pyridine (pbbp) with RuCl3 and disodium pyridine-2,6-dicarboxylate (pydic). The Ru(pbbp)(pydic) was characterized thoroughly by spectroscopic methods. ICP analysis revealed that the percentage of complexation of 2,6-bis(benzimidazolyl)pyridine unit in pbbp was about 83%. The complex was tested as a heterogeneous catalyst for the oxidation of secondary alcohols to their corresponding carbonyl compounds in solvent-free conditions using aqueous tert-butyl hydroperoxide as oxidant. The developed catalytic system exhibited high activity and broad functional group compatibility, allowing a variety of secondary alcohols, including substituted secondary benzylic alcohols and secondary aliphatic ones, to be oxidized to the corresponding ketones in high yields. This Ru(pbbp)(pydic) could be recycled for several times, but it dissolved in part in the reaction mixture during the catalytic run leading to gradual deactivation of the catalyst with repeated runs.  相似文献   

5.
H Nakata 《Tetrahedron》1963,19(12):1959-1963
Oxidation of steroid alcohols by ruthenium tetroxide gives corresponding ketones in almost quantitative yields. The reaction provides a simple and convenient procedure for converting secondary alcohols to ketones in neutral media. The reconversion of ruthenium dioxide, produced during the oxidation, into the tetroxide with an appropriate oxygen donor such as sodium metaperiodate makes possible the oxidation of a given steroid alcohol to a ketone in the presence of a catalytic amount of ruthenium tetroxide.  相似文献   

6.
Benzylic, allylic, and aliphatic alcohols are oxidized to aldehydes and ketones in a reaction catalyzed by Keggin-type polyoxomolybdates, PV(x)Mo(12-x)O(40)(-(3+x)) (x = 0, 2), with DMSO as a solvent. The oxidation of benzylic alcohols is quantitative within hours and selective, whereas that of allylic alcohols is less selective. Oxidation of aliphatic alcohols is slower but selective. Further mechanistic studies revealed that, for H(3)PMo(12)O(40) as a catalyst and benzylic alcohols as substrates, the sulfoxide is in fact an oxygen donor in the reaction. Postulated reaction steps as determined from isotope-labeling experiments, kinetic isotope effects, and Hammett plots include (a) sulfoxide activation by complexation to the polyoxometalate and (b) oxygen transfer from the activated sulfoxide and elimination of water from the alcohol. The mechanism is supported by the reaction kinetics.  相似文献   

7.
A meso-tetraaryl ruthenium porphyrin complex having four polymerizable vinylbenzoxy groups (2) has been synthesized by reaction of pyrrole with 4-(vinylbenzoxy)benzaldehyde and subsequent metalation with [Ru3(CO)12]. The porphyrin complex was immobilized by copolymerization with ethylene glycol dimethacrylate. The resulting polymer P2 was found to catalyze the oxidation of alcohols and alkanes with 2,6-dichloropyridine N-oxide without activation by mineral acids. Under similar conditions, the homogeneous catalyst 2 was completely inefficient. By using diphenylaminomethane and 1-aminoadamantane as coordinatively bound templates during the polymerization procedure, the molecularly imprinted polymers P3 and P4 have been synthesized. Compared with the polymer P2, the imprinted catalysts displayed a significantly increased activity with rate enhancements of up to a factor of 16.  相似文献   

8.
<正>Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex/alcohol molar ratio to optimize reaction conditions and to evaluate the catalytic efficiency of new cobalt Schiff base complexes.Under obtained optimum conditions,various alcohols were oxidized to corresponding aldehydes and ketones.  相似文献   

9.
Xie Y  Mo W  Xu D  Shen Z  Sun N  Hu B  Hu X 《The Journal of organic chemistry》2007,72(11):4288-4291
tert-Butyl nitrite (TBN) was identified as an efficient NO equivalent for the activation of molecular oxygen. The unique property of TBN enabled TEMPO-catalyzed aerobic alcohol oxidation to be performed in high-volume efficiency. Up to a 16,000 turnover number was achieved in this transition-metal-free aerobic catalytic system. Under the optimal reaction conditions, various alcohols were converted into their corresponding carbonyl compounds with TEMPO/HBr/TBN as catalyst. The newly developed method was suitable for the oxidation of solid substrate alcohols with high melting point and/or low solubility under the help of minimum solvent to form a slurry.  相似文献   

10.
A facile biomimetic method for rapid oxidation of alcohols to carbonyl compounds using dioxygen as the primary oxidant catalyzed by metallodeuteroporphyrin dimethyl ester [M(DPDME)] in acetonitrile as the reaction solvent and isobutylaldehyde as cocatalyst has been investigated. Among the M(DPDME) catalysts, where M = Fe(III), Co(II), Mn(III), Ni(II), Cu(II), and Zn(II), cobalt porphyrin was found to be the most active and effective catalyst. The catalytic system was widely used in the oxidation of various alcohols and especially exhibited excellent activity for oxidation of aromatic alcohols under mild conditions. Moreover, M(DPDME) was prepared from an improved facile method by chemical modification of natural hemin and an alternative mechanism for the aerobic oxidation of alcohols has been proposed and discussed. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:295–303, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21017  相似文献   

11.
The Ru/Al(2)O(3) catalyst was prepared by modification of the preparation of Ru(OH)(3).n H(2)O. The present Ru/Al(2)O(3) catalyst has high catalytic activities for the oxidations of activated, nonactivated, and heterocyclic alcohols, diols, and amines at 1 atm of molecular oxygen. Furthermore, the catalyst could be reused seven times without a loss of catalytic activity and selectivity for the oxidation of benzyl alcohol. A catalytic reaction mechanism involving a ruthenium alcoholate species and beta-hydride elimination from the alcoholate has been proposed. The reaction rate has a first-order dependence on the amount of catalyst, a fractional order on the concentration of benzyl alcohol, and a zero order on the pressure of molecular oxygen. These results and kinetic isotope effects indicate that beta-elimination from the ruthenium alcoholate species is a rate-determining step.  相似文献   

12.
《合成通讯》2013,43(10):1501-1515
ABSTRACT

Supported metalated phthalocyanine on K10 or on lamellar zirconium phosphate catalyses the oxidation of hydroquinones (and phenols) into quinones. Some interesting natural napthoquinones were also prepared (Juglone, Menadione, Lawsone, Phthiocol). Supported metalated phthalocyanine was also used in re-oxidation by oxygen of palladium and ruthenium, in the Wacker oxidation of olefins into ketones, in the oxidation of cyclohexadiene and in oxidation of benzylic alcohols in aldehydes.  相似文献   

13.
The mechanisms of oxidation of a series of a-alkyl substituted mono and dimethoxylated benzyl alcohols catalysed by mesotetrakis(4-N-methylpyridynium)porphyrin iron (III) chloride (FeTMPyPCl) and meso-tetrakis(4-sulfonatophenyl)porphyrin iron (III) chloride (FeTSPPCl) in aqueous solution with KHSO5 as oxygen atom donor and by meso-tetrakis(pentafluorophenyl)-porphyrin iron (III) chloride (FeTPFPPCl) in dichloromethane employing iodosylbenzene as oxidant have been investigated. In the highly polar aqueous medium an electron transfer mechanism is operating. With FeTMPyPCl, which is a much more efficient catalyst than FeTSPPCl due to the presence of stronger electron withdrawing substituents, formation of side-chain oxidation products accompanies generation of nuclear oxidation products. In the low polar solvent dichloromethane, two competing mechanism have been suggested: hydrogen atom transfer and formation of a complex between the active species iron-oxo porphyrin radical cation and the substrate.   相似文献   

14.
Highly efficient catalytic oxidation of alcohols with molecular oxygen by N-hydroxyphthalimide (NHPI) combined with a Co species was developed. The oxidation of 2-octanol in the presence of catalytic amounts of NHPI and Co(OAc)2 under atmospheric dioxygen in AcOEt at 70 degrees C gave 2-octanone in 93% yield. The oxidation was significantly enhanced by adding a small amount of benzoic acid to proceed smoothly even at room temperature. Primary alcohols were oxidized by NHPI in the absence of any metal catalyst to form the corresponding carboxylic acids in good yields. In the oxidation of terminal vic-diols such as 1,2-butanediol, carbon-carbon bond cleavage was induced to give one carbon less carboxylic acids such as propionic acid, while internal vic-diols were selectively oxidized to 1,2-diketones.  相似文献   

15.
Primary and secondary alcohols with benzylically and allylically activated C-H bonds are chemoselectively oxidized to the corresponding carbonyl compounds by the (salen)Cr(III) complex I as the catalyst and iodosobenzene as the oxygen source; the oxidizing species is the Cr(V) oxo complex. Allylic alcohols with fully substituted double bonds give appreciable amounts of epoxides besides the C-H oxidation products enones, while saturated alcohols are less readily oxidized.  相似文献   

16.
Manganese(III) tetrakis(p-sulfonatophenyl)porphyrin was successfully bound to silica modified with zirconium. The heterogeneous catalyst, MnTPPS-silica, was characterized by SEM, FT-IR and diffuse reflectance UV-Vis spectroscopic techniques. MnTPPS-silica catalyzes alkene epoxidation and alkanes hydroxylation with sodium periodate under agitation with magnetic stirring and ultrasonic irradiation in the presence of imidazole as an axial ligand. This catalytic system shows a good activity in the epoxidation of linear alkenes. Alkyl aromatic and cycloalkanes were efficiently oxidized to their corresponding alcohols and ketones in the presence of this catalyst. This new heterogeneous catalyst is of high stability and reusability in the oxidation reactions and can be reused several times without loss of its activity.  相似文献   

17.
The kinetics and mechanism of water oxidation with cerium(IV) compounds catalyzed by a tetranuclear ruthenium complex containing two polyoxotungstate ligands are reported. Four water molecules are oxidized via an eight-electron process to form two oxygen molecules.  相似文献   

18.
An efficient and mild methodology for the oxidation of primary and secondary alcohols to the corresponding carbonyl functions is described with N,N,N,N′‐tetrabromobenzene‐1,3‐disulfonamide and poly(N‐bromobenzene‐1,3‐disulfonamide) using microwave irradiation under solvent‐free conditions. Aliphatic, benzylic and allylic alcohols are rapidly oxidized without over‐oxidation to carboxylic acids. Secondary carbinols are slowly oxidized so that the reaction is highly chemoselective.  相似文献   

19.
The interaction of monoatomic alcohols C2-C4 with the surface of a copper catalyst preliminarily oxidized under various conditions was studied by the temperature-programmed reaction method to determine the detailed mechanism of partial oxidation. The conditions of oxygen preadsorption on the surface of copper for the preparation of the desired products were determined. The selective formation of carbonyl compounds was shown to occur at the boundary between reduced and oxidized copper surface regions. The role played by Cu2O was the deep oxidation of alcohols to CO2. Alcohols with branched hydrocarbon structures experienced parallel partial oxidation and dehydrogenation, which was related to the high stability of intermediate keto-type compounds.  相似文献   

20.
An efficient and mild methodology for oxidation of alcohols and polyarenes was described using cetyltrimethylammonium bromochromate (CTMABC) under microwave irradiation. Primary and secondary alcohols and polyarenes could be selectively oxidized under microwave irradiation into the corresponding aldehydes and ketones in high yields and short reaction time, using commercially available and magnetically retrievable oxidative material (CTMABC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号