首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane processes like reverse osmosis (RO) and nanofiltration (NF) can be low energy consuming operations as compared to the traditional chemical engineering unit operations and have been widely used for aqueous systems. Since such membrane processes are low energy consuming operations, their use in non-aqueous systems would offer considerable energy savings. Thus, the study is directed towards development and experimental verification of membrane materials and transport models to explain permeation properties of non-aqueous solvent systems. The understanding of polymer–solvent interactions is critical towards the development of suitable materials and also the prediction of the transport mechanisms.Pure solvent permeation studies were conducted to understand the mechanism of solvent transport through polymeric membranes. Different membrane materials (hydrophilic and hydrophobic) as well as different solvents (polar and non-polar) were used for the study. Pure solvent fluxes for hydrophilic membranes used showed that polar solvents (methanol, ethanol, iso-propanol) had a significantly higher flux (8–10 times) than that of the non-polar solvents (pentane, hexane, octane). On the contrary, the non-polar solvent flux was two to four times that of the polar solvents for hydrophobic membranes. For example, hexane flux at ∼13 bar through a hydrophobic silicone based NF membrane was ∼0.6×10−4 cm3/cm2 s. And that through a hydrophilic aromatic polyamide based NF membrane was ∼6×10−4 cm3/cm2 s. A simple model based on a solution-diffusion approach is proposed for predicting the pure solvent permeation through hydrophobic polymeric membranes. The model uses molar volume and viscosity of the solvent as parameters for predicting the pure solvent permeability. The model reasonably predicts the pure solvent permeation (R2=0.89, S.E.∼4%) for hydrophobic membranes. The model has also been experimentally verified using high solution temperatures and also literature experimental data. To extend the predictions to different membranes (hydrophilic and hydrophobic), surface energy and sorption values have been used as a parameter along with the solvent physical properties.  相似文献   

2.
This work examines the flux performance of organic solvents through a polydimethylsiloxane (PDMS) composite membrane. A selection of n-alkanes, i-alkanes and cyclic compounds were studied in deadend permeation experiments at pressures up to 900 kPa to give fluxes for pure solvents and mixtures between 10 and 100 l m−2 h−1. Results for the chosen alkanes and aromatics, and subsequent modelling using the Hagen–Poiseuille equation, suggest that solvent transport through PDMS can be successfully interpreted via a predominantly hydraulic mechanism. It is suggested that the mechanism has a greater influence at higher pressures and the modus operandi is supported by the non-separation of binary solvent mixtures and a dependency on viscosity and membrane thickness. The effects of swelling that follow solvent–membrane interactions show that the relative magnitudes of the Hildebrand solubility parameter for the active membrane layer and the solvent(s) are a good indicator of permeation level. Solvents constituting a group (e.g. all n-alkanes) induced similar flux behaviours when corrections were made for viscosity and affected comparable swelling properties in the PDMS membrane layer.  相似文献   

3.
耐溶剂纳滤膜   总被引:6,自引:0,他引:6  
卫旺  相里粉娟  金万勤  徐南平 《化学进展》2007,19(10):1592-1597
纳膜分离过程是一种选择性高、操作简单、能耗低的分离技术,已在各工业领域和科学研究中得到广泛的应用。纳滤过程的诸多优点,使其在石油化工、医药、食品等领域的非水溶液体系中具有极大的潜在应用价值,而传统的纳滤膜难以拓宽到非水溶液体系中使用,为此进一步研究和发展耐溶剂纳滤膜,对于拓宽纳滤过程的应用极其重要。目前,耐溶剂纳滤膜已成为膜分离科学领域的研究热点,在现有报道的文献基础上,本文综述了有关在非水溶液体系中使用的耐溶剂纳滤膜制备的研究进展,并对将来的发展方向提出了建议。  相似文献   

4.
In the present study, an activity coefficient model, based on the concept of local volume fractions and the Gibbs–Helmholtz relation, has been developed. Some modifications were made from Tan–Wilson model (1987) and TK–Wilson model (1975) to represent activity coefficients in mixed solvent–electrolyte systems. The proposed model contains two groups of binary interaction parameters. One group for solvent–solvent interaction parameters corresponds to that given by the TK–Wilson model (1975) in salt-free systems. The other group of salt–solvent interaction parameters can be calculated either from vapor pressure or bubble temperature data in binary salt–solvent systems. It is shown that the present model can also be used to describe liquid–liquid equilibria. No ternary parameter is required to predict the salt effects on the vapor–liquid equilibria (VLE) of mixed solvent systems. By examining 643 sets of VLE data, the calculated results show that the prediction by the present model is as good as that by the Tan–Wilson model (1987), with an overall mean deviation of vapor phase composition of 1.76% and that of the bubble temperature of 0.74 K.  相似文献   

5.
In the present study, the permeation behavior of methanol and methyl acetate in the pervaporation (PV) experiments are compared with those in vapor permeation (VP) experiments using a PVA-based composite membrane. Experiments have been carried out to study the selectivity and mass transport flux of the systems under varying operations conditions of feed temperature (40–60 °C) and feed methanol concentrations (2–34 wt%). The selected membrane was found to be methanol selective. Results show higher permeation flux but a similar separation factor for methanol in PV than in VP. For PV operation, the resulting separation factor at 60 °C shows a monotonous decrease (6.4–4.1) as the alcohol concentration in the feed mixture increases (2.3–34 wt%), whereas the total flux increases from 0.97 to 7.9 kg m−2 h−1. Based on the solution-diffusion theory, a mathematical model that describes satisfactorily the permeation fluxes of methanol and methyl acetate in both the PV and VP processes has been applied. The fluxes of both permeants can be explained by the solution-diffusion model with variable diffusion coefficients dependent on MeOH concentration in the membrane. Both PV and VP processes can be described with the same model but using different fitting parameters.  相似文献   

6.
It has been widely recognized for many years that gases, vapors, liquids, and solutes permeate through non-porous polymer membranes by a solution-diffusion mechanism1–5. However, it was only ten years ago that it was first proposed6 that reverse osmosis might be quantitively described by this mechanistic model. The solution-diffusion model first published by Lonsdale, Merten and Riley6 has been applied with considerable success to describe a variety of systems but the cellulose acetate-water-inorganic salt system has received most attention due to its importance in desalination. It is widely accepted that this model not only describes the process of reverse osmosis but also represents an accurate mechanism in those cases where the membrane structure is truly dense, i. e. non-porous, with no imperfections - this condition refers only to the “active layer” in Loeb-type6 membranes.  相似文献   

7.
For the first time the combination of solution casting and solvent–nonsolvent exchange (phase inversion) has been applied to generate asymmetric membranes with highly ordered hexagonally packed cylinders with perpendicular orientation composed of polystyrene-block-poly(ethylene oxide). The influence of parameters like solvent composition and evaporation time on the membrane formation is presented. The development is based on a study of the solution behavior by dynamic light scattering and the precipitation behavior of the cylinder forming diblock copolymer by turbidity measurements from different solvent and nonsolvent systems. The water flux properties, as an important membrane characteristic, show a time dependent behavior, due to swelling of the polyethylene oxide blocks. The morphologies of the membranes are imaged by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

8.
Five kinds of asymmetric poly(vinylidene fluoride) (PVDF) hollow fiber membranes with considerable different porosities at the inner and outer surfaces of the membrane were prepared via thermally induced phase separation (TIPS) method and applied for propylene absorption as gas–liquid membrane contactors. A commercial microporous poly(tetrafluoroethylene) (PTFE) hollow fiber membrane was also used as a highly hydrophobic membrane. Experiments on the absorption of pure propylene into silver nitrate solutions were performed and the effects of membrane structure, inner diameter, silver nitrate concentration and absorbent liquid flow rate were investigated at 298 K. PVDF membranes prepared by using nitrogen as bore fluid had lower inner surface porosity than the membranes prepared with solvent as bore fluid. Except the membrane with a skin layer at the outer surface, propylene absorption flux was inversely proportional to the inner diameter of the hollow fiber membrane, and propylene absorption rate per fiber was almost the same. Propylene flux increased with increasing the silver nitrate concentration and also with increasing the absorbent flow rate.A mathematical model for pure propylene absorption in a membrane contactor, which assumes that the membrane resistance is negligibly small and the total membrane area is effective for gas absorption, was proposed to simulate propylene absorption rates. Experimental results were satisfactorily simulated by the model except for the membrane having a skin layer. The model also suggested that propylene is absorbed in silver nitrate solutions accompanied by the instantaneous reversible reaction. This paper may be the first experimental and theoretical study on propylene absorption in membrane contactors.  相似文献   

9.
A limiting flux model has been recently developed for predicting the fouling behavior of reverse osmosis and nanofiltration membranes by organic macromolecules [C.Y. Tang, J.O. Leckie, Membrane independent limiting flux for RO and NF membranes fouled by humic acid, Environmental Science and Technology 41 (2007) 4767–4773]. Several interesting results have been observed: (a) there was a maximum pseudo-stable flux (the limiting flux) beyond which further increase in applied pressure did not translate to a greater stable flux; (b) all membrane samples attained the limiting flux under constant pressure conditions as long as their initial flux was greater than the limiting flux; (c) the limiting flux did not depend on the properties of membranes; (d) the limiting flux had strong dependence on the feedwater composition, such as pH, ionic strength, and divalent ion concentration. The current study investigates the dependence of limiting flux on intermolecular interaction between foulant molecules. It was observed that the limiting flux was directly proportional to the intermolecular electrostatic repulsive force and that conditions enhancing foulant-deposited-foulant repulsion resulted in greater limiting flux values. Such observations agree well with a theoretical model capturing both hydrodynamic and DLVO interactions. Interaction force measurements by atomic force microscopy (AFM) were also performed. The limiting flux correlated reasonably well with AFM interaction force between the model foulant and the fouled membrane surface.  相似文献   

10.
Fouling of reverse osmosis (RO) and nanofiltration (NF) membranes by humic acid, a recalcitrant natural organic matter (NOM), was systematically investigated. The membrane flux performance depended on both hydrodynamic conditions (flux and cross-flow velocity) and solution composition (humic acid concentration, pH, ionic strength, and calcium concentration), and was largely independent of virgin membrane properties. While increasing humic acid concentration and ionic strength, and lowering cross-flow velocity affected flux performance moderately, severe flux reduction occurred at high initial flux, low pH, and high calcium concentration. At a calcium concentration of 1 mM, all the membranes exhibited an identical stable flux, independent of their respective intrinsic membrane permeabilities. The effect of solution composition was more significant at higher fluxes. Improved salt rejection was observed as a result of humic acid fouling, which was likely due to Donnan exclusion by humic material close to membrane surfaces. Greater rejection improvement was observed for membranes with rougher surfaces.  相似文献   

11.
12.
The mechanism of facilitated transport of metal ions across polymer inclusion membranes (PIMs) is revised on the basis of transport flux measurements and of new data brought by techniques sensitive to local inter-molecular interactions and molecular diffusion. Cellulose triacetate (CTA) membranes built with two types of inclusion carriers: a liquid one Aliquat 336 and a crystalline one Lasalocid A, both able to carry metal ions across PIMs and supported liquid membranes (SLMs) made of the same components, have been compared. Both PIM systems show similar effects for what concern the need of a carrier threshold concentration for the occurrence of a transport flux across PIM as revealed by flux and fluorescence correlation spectroscopy (FCS) measurements, and the dependence of the chemical nature of plasticizers on the metal ion flux. These systems also present similar Raman and far IR signatures of structural evolution of PIMs with the increase of the carrier concentration within the CTA matrix.

All the presented data are interpreted as concern PIMs, according to an evolution of chemical interactions between components of the polymeric membrane able to lead to a phase transition. This phase transition type of the carrier-plasticized polymer system is induced by the increase of carrier concentration in the polymer chains. The PIM progressively organizes itself like a liquid SLM because of the enhancement of preferential solvent interactions between the carrier and the plasticizer.

The main conclusion of this study is that the classically adopted “hopping” transport mechanism between fixed carrier sites in a PIM does not apply to such carrier chemically unbound to polymer membrane systems.  相似文献   


13.
Lysophospholipids are known to play a role in a wide range of cellular processes involving membrane–protein or membrane–membrane interactions; however lysolipids–lamellar lipids interactions remain unclear. The effects of lysolipids on membrane order and dynamics were examined using optical birefringence and fluorescence techniques. We found that lysophosphatidic acid (LPA) induces a considerable disorder in chain orientation for synthetic lipid of dimyristoyl-phosphatidylcholines (DMPC), whereas a slight order for natural lipid of egg yolk phosphatidylcholine (Egg-PC), e.g. the chain order decreases by 10% at 0.1 mole ratio for DMPC in comparison with the membranes without LPA and increases by 3.4% at 0.09 mole ratio for Egg-PC. Also, membrane fluidity corresponds with the change in the chain disorder, namely, the fluidity increases for DMPC membranes, while decreases for Egg-PC membranes by addition of LPA. The difference in the effects of LPA is interpreted by a difference in the chain packing between the synthetic and the natural lipid bilayers. LPA can be incorporated into natural lipid membranes without disturbance, and readjusts itself to a more favorable hydrophobic match with the bilayers. Lysophophatidylcholine (LPC) also induces a disorder in DMPC membranes, but the decrease in chain order is only half compared with that for LPA.  相似文献   

14.
王正武  李干佐  张笑一  李丽 《化学学报》2002,60(9):1548-1552
利用定量结构-性能相关(QSPR)原理,建立起了8类不同结构,计40个阴离子 表面活性剂临界胶束浓度(cmc)的定量模型。所得到的最佳模型包括:分子总能 量(E_T)、分子生成热(ΔH_f)、分子偶极矩(D)、前线分子轨道能量(E_ (LUMO),E_(HOMO))及憎水基0级Kier & Hall指数(KHO),计6个描述符,复相关 系数R~2 = 0.9778。  相似文献   

15.
16.
17.
The large dipole moment and the negative dipole moment derivatives with respect to H–Rg displacement of the neutral HRgX (Rg=He, Ar, Kr; X=F, Cl) molecules have been rationalised by a charge/charge flux/dipole flux decomposition of the charge density using the ChelpG method. This approach was also applied to the hydrogen halides HF and HCl for the sake of comparison. It was found that the dipole moment of HRgX is dominated by the large positive charge contribution while the negative dipole moment derivative of HRgX is due to the dominance of the negative charge flux contribution.  相似文献   

18.
Bilayer lipid membranes (BLM) are commonly used as models for cell membranes to study their interactions with inorganic ions and molecules of biological importance. In this work the principal electrostatic effects at the BLM surface are demonstrated by two methods: by the inner membrane field compensation (IFC) which is applied to planar BLM and sensitive to changes in the total boundary potential; and by electrokinetic measurements in liposome suspensions, sensitive to diffuse (surface) component of this potential. The difference in these two potentials allows us to conclude on changes in the dipole component of the boundary potential caused by structural changes at the membrane–water interface. No difference in the experimental data of both methods was observed for Be2+ and other divalent cation adsorption to unchanged phosphatidyl choline (PC) membranes. These data are in a good agreement with the Gouy–Champan–Stern (GCS) theory of diffuse double layer. This theory gives the value of binding constants for Be2+ about 400 M−1 and 104 M−1 for DPPC liposomes in the liquid and solid states of the lipids, respectively. Clear isotope effects for normal and heavy water solutions of Be2+ were observed both by the electrostatic measurements and by differential scanning calorimetry. In contrast to PC, the electrostatic potentials induced by Be2+ and Gd3+ adsorption to membranes from phosphatidyiserine (PS) show the difference between the data of mentioned methods — total boundary potential changes are much higher in comparison to the surface potential. Dipole potential changes (about 150 mV) caused by changes in PS head group orientation may be more important in this specific case.  相似文献   

19.
The preparation and properties of asymmetric poly(vinyldiene fluoride)(PVDF)membranes are described in this study.Membranes were prepared from a casting solution of PVDF,N,N-dimethylacetamide(DMAc)solvent and water- soluble poly(ethylene glycol)(PEG)additives by immersing them in water as coagulant medium.Experiments showed that when PEG molecular weight increased,the changes in the resultant membranes' morphologies and properties showed a transition point at PEG6000.This indicated that PEG with a relati...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号