首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adsorption of polyelectrolyte (PE) multilayers and complexes, obtained from both high- and low-charge polyelectrolytes, was studied on silica and on cellulose model surfaces by quartz crystal microbalance with dissipation (QCM-D). The film properties acquired with the different strategies were compared. When polyelectrolytes were added on an oppositely charged surface in sequence to form multilayers both the change in frequency and dissipation increased. The changes in frequency and dissipation were clearly higher if low-charge PEs were used in the multilayer formation. The substrate, silica or cellulose, did not affect the adsorption behaviour of low-charge PEs and only minor differences were seen in the adsorbed amounts and changes in dissipation of high-charge PEs between SiO2 and cellulose. The complexes formed by low-charge PEs had higher changes in frequency and dissipation at low ionic strength on both surfaces, while the complexes formed from high-charge polyelectrolytes adsorbed more at high salt concentration. The complexes of low-charge polyelectrolytes adsorbed more on silica, while the complexes formed by high-charge PEs formed thicker layers on cellulose. The charge ratio had a significant effect on the adsorption and the highest changes in frequency and dissipation were obtained in the anionic/cationic charge ratio of 0.5–0.6. Generally, the multilayers and complexes formed by low-charge polyacrylamides adsorbed highly and formed rather thick layers on both surfaces, unlike the high-charge PEs which formed thin layers using either one of the addition techniques.  相似文献   

2.
The adsorption of human fibrinogen on tantalum oxide, titanium oxide and gold surfaces has been studied by quartz crystal microbalance with dissipation (QCM-D) at 37 degrees C. Two different protein concentrations have been used, one close to physiological concentration (1 mg/ml) and one significantly lower (0.033 mg/ml). To further characterize the adsorbed fibrinogen layer, the subsequent binding of both polyclonal and monoclonal antibodies of fibrinogen is studied. We found that the viscoelastic properties of the fibrinogen layer depends strongly on the initial protein concentration. The trend is generally seen for all three surfaces. The fibrinogen layer on gold and tantalum oxide is found to have the same viscoelastic properties, which are different from those found for the fibrinogen layer adsorbed on titanium oxide. The dependency of the surface chemistry on the viscoelastic properties of the fibrinogen layer is observed directly for the 0.033 mg/ml solution, and indirectly through the antibody response for the 1 mg/ml solution. From this we conclude that the orientation and/or denaturation of fibrinogen on a surface depends on the surface chemistry and the protein concentration in the solution, and that the binding of antibodies is a useful way to detect this difference.  相似文献   

3.
We have devised a new type of laser reflectometer that can measure adsorption behavior of (bio)-polymers, such as proteins, on the substrate surface and also the wetting for the surface of adsorbed layer of such (bio)-polymers. The adsorption and the wetting experiments can be conducted in a sequential manner using the same sample by this apparatus. So, the wetting of the surface of protein-adsorbed layer can be measured in virtually intact state. The reflectometry is based on the traditional optical polarimetry and the wetting measurement is due to the dropping time method (DTM) that has been reported before by the authors. The two methods are combined in an apparatus and hence we can correlate the wetting of protein layer adsorbed on the substrate surfaces with the amounts of protein molecules on the surface. As a model case we demonstrate the adsorption of several typical water soluble globular proteins on stainless steel surfaces. For this combination of the adsorbent with adsorbates, it is found that the water wetting of the protein adsorbed surface is closely related with the adsorbed amounts of proteins not depending on species.  相似文献   

4.
A novel temperature-sensitive molecular imprinted hydrogel composed of 2-acrylamido-2-methyl-propanosulfonic acid (AMPS), N-isopropylacrylamide (NIPAm) and acrylamide (AAm) has been prepared by free-radical cross-linking copolymerization in aqueous solution under two different temperatures (25 °C and −20 °C). Bovine serum albumin (BSA, pI 4.9, MW 66.0 kDa) is used as the template protein. The influence of the external temperature stimuli on the affinity of the hydrogels was investigated, and the optimal binding conditions were tested. The adsorption capacity (Qmax) and association constant (K) for the specific interaction between the hydrogel and the template protein were determined by Langmuir isotherm plots. Several types of reference protein, which are different in molecular weights and isoelectric points were chosen to investigate the selectivity of the hydrogels. It was shown that the shape memory and the charge effect were the major factors for the recognition. This imprinted hydrogel was used to specifically adsorb the BSA from the protein mixture and real sample, which demonstrated its potential selectivity.  相似文献   

5.
Both quartz crystal micro-balance (QCM) impedance and electrochemical impedance spectroscopy (EIS) methods are widely used in interface studies. This paper presents details about a new strategy for simultaneous, mutual-interference-free and accurate measurements of QCM impedance and EI, through connecting a suitable capacitance in series with the piezoelectric quartz crystal (PQC) between QCM impedance and EIS measurement instruments. Combined and individual measurements of QCM impedance and EIS during silver deposition gave results comparable with each other, demonstrating the reliability of the proposed method. Bovine serum albumin (BSA) adsorption on gold and platinum electrodes in Britton-Robinson (B-R) buffers was investigated, and the Fe(CN)6(3-)/Fe(CN)6(4-) couple was used as an electrochemical probe to characterize BSA adsorption. While the reversibility of Fe(CN)6(3-)/Fe(CN)6(4-) couple on bare Au and Pt electrodes changed very slightly with decreasing solution pH from pH approximately 7 to pH approximately 2, the standard rate constant (ks) of this couple increased abruptly with solution pH below pH approximately 4.5 at a BSA-modified Au electrode, but decreased with solution pH at a BSA-modified Pt electrode. By analyzing the QCM impedance data with a modified BVD equivalent circuit and the EI data with a modified Randle's equivalent circuit, inflexion changes at pH approximately 4.5 were all found at pH-dependent responses of the resonant frequency, the double-layer capacitance, the capacitance of the adsorbed BSA layer, the peak-absorbance values of BSA solutions at 277.5 and 224.5 nm, and so on. It was also found that a BSA adsorption layer can effectively inhibit gold corrosion during ferrocyanide oxidation in a ferrocyanide-containing BR solution. Some preliminary explanations of these findings have been given. The proposed method is highly recommended for wider applications in surface science.  相似文献   

6.
Adsorption and deposition from turbid solutions are common in many industrial processes but notoriously difficult to investigate using standard optical techniques such as ellipsometry and reflectometry. In this report, we have addressed this problem by employing a quartz crystal microbalance with dissipation monitoring ability, QCM-D. The system under investigation consisted of a cationic polyelectrolyte, poly(vinylamine), PVAm, and an anionic surfactant, sodium dodecyl sulfate, SDS, which were mixed together in 10 mM NaCl solution. The polyelectrolyte and the surfactant readily associate in bulk solution, resulting in increased solution turbidity once large aggregates are formed. The solutions were placed in contact with a polystyrene surface, and the adsorption process was monitored by following the changes in the resonance frequency and dissipation factor. The results obtained can in most cases be evaluated using the Sauerbrey relation, but in some cases a more elaborate analysis is necessary. It is found that PVAm adsorbs to polystyrene in the absence of SDS. In the turbid region, deposition is observed, and the sensed mass exceeds the sum of that obtained for each of the components alone. On the other hand, at high SDS concentrations, the surfactant dominates in the adsorbed layer. Adsorption equilibrium is in most cases established within 1-2 h, the exception being found around the solution composition that results in the formation of charge-neutralized aggregates. In this case, a slow deposition of aggregates persists over prolonged times.  相似文献   

7.
The adsorption of bovine serum albumin (BSA) onto a cationic monolayer (N,N-dimethyl-N,N-dialkylammonium chloride) spread at the air/water interface was studied by ellipsometry. Both thicknesses and refractive indices of the BSA layer adsorbed at the monolayer/solution interface are estimated from the observed change in phase difference and the ratio of reflection coefficients. The amount of adsorption of BSA resembles a Langmuir type isotherm. The adsorption changes with pH asymmetrically with respect to the pH of maximum adsorption, which was calculated to be 5.06 ± 0.47 mg/m2. The amount of maximum adsorption implies that the BSA molecule adsorbs to the surface in a mode intermediate between side-on and end-on.  相似文献   

8.
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) was applied to the study of competitive protein adsorption from diluted human plasma. We obtained the depletion (adsorption) of some 25 plasma proteins in the presence of low-temperature isotropic carbon (LTIC) or silica powders. The depletion data are used as a measure of protein adsorptivity. Generally, proteins of lowest abundance have the highest tendency to associate with the two solid surfaces studied. The adsorptivity of a protein is largely determined by its solubility. Most proteins detected exhibit similar depletion behavior on both adsorbents, suggesting a multilayer adsorption process. Three proteins, hemopexin, apolipoprotein A I, and apolipoprotein A II, are depleted differently in the presence of LTIC and silica powders.  相似文献   

9.
The effect of albumin adsorption on neutral active aluminium oxide was investigated in the presence of polar and non-polar liquids. The adsorbed values were highest near the isoelectric point of albumin and varied in the range 5–10 and 3–11 mg g–1 with phosphate buffer and potassium chloride respectively after 2 and 24 h. In the case of aluminium oxide the effect of albumin adsorption on total heterogeneity of adsorbents is not explicit. On the one hand, the modified samples showed decreasing surface area with increase of surface coverage with albumin. On the other hand, modifications under the same conditions but without albumin caused similar changes. These effects suggest the strong influence of medium pH on surface properties (due to surface polarization) and competitive co-adsorption of ions on the process. The volumetric fractal dimensions of the studied materials change in the range 2.25–2.32 for pure aluminium oxide and BSA modified from the phosphate solution. E d,max values (desorption energy in the maximum of distribution function) diminish (in the range 40–45 kJ mol–1) compared with pure aluminium oxide (E d,max=52 kJ mol–1) for water thermodesorption at modified surfaces to the increase of a number of active centers of hydrophobic character, and weakening of the adsorbent–adsorbate increases.  相似文献   

10.
In this paper cellulose nanofibrils were used together with a cationic polylelectrolyte, poly(amideamine) epichlorohydrin (PAE), to enhance the wet and the dry strength of paper. The adsorption of nanofibrils and PAE on cellulose model surfaces was studied using quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The differences in fibril and polyelectrolyte adding strategies onto cellulose fibres were studied by comparing layer-structures and nano-aggregates formed by the nanofibrils and PAE. The results showed that when PAE was first adsorbed on the model fibre surface a uniform and viscous layer of nanofibrils could be adsorbed. When PAE and nanofibrils were adsorbed as cationic aggregates a non-uniform and more rigid layer was adsorbed. Paper sheets were prepared using both the bi-layer and nano-aggregate adding strategy of the nanofibrils and PAE. When PAE and nanofibrils were adsorbed on pulp fibres as a bi-layer system significant increase in both wet and dry tensile strength of paper could be achieved even at low added amounts of PAE. When the substances were added as nano-aggregates the improvements in paper strength properties were not as significant. Bulk and surface nitrogen content analyses of the paper samples showed that the adding strategy does not affect the total adsorbed amount of PAE but it has a strong effect on distribution of substances in the paper matrix which has a crucial effect on paper wet and dry strength development.  相似文献   

11.
The effects of incorporating an additional component, egg-yolk lecithin, on the properties of oil-in-water emulsions stabilized by casein have been studied. The impact of lecithin on the stability of the emulsions was studied using integrated light scattering and the casein-oil-lecithin interaction was studied with photon correlation spectroscopy combined with breakdown of the adsorbed protein layers by proteolysis. Lecithin was found to enhance the stability of the emulsions at low cascin concentrations, below the limiting surface coverage of 1 mg m−2 of casein which is found in the absence of lecithin. Conversely, small amounts of casein also stabilized flocculating oil-lecithin emulsions. The hydrodynamic thickness of the adsorbed protein layer on the hydrophobic oil surface was modified by the presence of lecithin. When the total surface area occupied by lecithin was less than 10% (5 mg lecithin for 2 ml oil), the thickness of the adsorbed casein layer was not significantly different from that in the absence of phospholipid. At higher concentrations of lecithin, the adsorbed casein layer had a lower minimum value for the layer thickness of 6.5 nm at low casein concentration and an upper plateau value of 8 nm at saturated adsorption, compared to a low limit of 5 nm and a plateau value of 10 nm in the absence of lecithin, demonstrating that the structure of the adsorbed casein layer was changed by the presence of phospholipid.  相似文献   

12.
The importance of protein adsorption on biomaterials is widely recognized, but the dependence of the adsorption results on the chosen technique has not been much addressed. The objective of this work is to compare adsorption data obtained using several techniques under experimental conditions as closely as possible. Two case studies were investigated: adsorption of bovine serum albumin (BSA) onto 316L stainless steel (SS) and onto alumina. Both materials were used as powders and plates, whose characterization was done through zeta potential (ZP) measurements. The experimental techniques were depletion, protein radiolabeling, quartz crystal microbalance with dissipation (QCM‐D) and atomic force microscopy (AFM). The adsorption isotherms obtained with depletion and QCM‐D techniques, although quantitatively different, present some similarities in shape. Both techniques suggest the existence of a compact end‐on monolayer of protein on the SS surface, while on the alumina surface a less dense side‐on monolayer is formed at lower BSA concentration, followed by a second layer at higher concentration. AFM topographical characterization of the protein films adsorbed on both materials confirms those findings. Further use of AFM in determining the thickness of the film adsorbed on SS yielded values in good agreement with the QDM‐D results. Different surface charges measured on powders and plates do not seem to affect adsorption. Protein radiolabeling seems to be the least reliable technique because it yields, for both materials, adsorption values higher than those from the other techniques. In the case of SS, the difference amounts to one order of magnitude. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
材料表面的物理和化学性质对蛋白质的吸附具有很大的影响[1].对蛋白质吸附的研究是研制生物传感器、生物芯片和生物材料的基础.  相似文献   

14.
In situ adsorption of human serum albumin (HSA) and ovalbumin (OVA) was real-time monitored by piezoelectric quartz crystal impedance (PQCI) technique to fully understand the initial cellular response on hydroxyapatite/chitosan (HAP/CS) composite. The PQCI parameters, such as resonant frequency (f), static capacitance (Cs), and motional resistance (Rm) were measured for investigating the kinetic adsorption behaviors of both proteins. The change in frequency shifts (Δf) depends on the amount of the adsorbed protein, and the change in motional resistance (ΔRm) results from the microporosity variation of HAP/CS coating. The results show that the amount of the absorbed HSA is much greater than that of OVA on HAP/CS coating because of the unique construction of HSA as well as a flexible protein. Furthermore, Δf and ΔRm data were fitted according to the kinetic exponential decay equations. It can be seen that there is only one adsorption process for OVA, but the absorption process for HSA is followed by a rearrangement process, and the former process is faster than the rearrangement process. Subsequently, the composite binding with proteins were demonstrated by the Fourier transform infrared (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).  相似文献   

15.
Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.  相似文献   

16.
The adsorption of HSA onto CHI/ALG multilayer assemblies was assessed in situ using QCM-D. It was found that the behavior of HSA on biomaterials surface can be tuned by adjusting parameters of the polyelectrolyte system such as pH, layer number, crosslinker and polymer terminal layer. Our results confirmed the key role of electrostatic interactions during HSA adsorption, since oppositely charged surfaces were more effective in promoting protein adhesion. QCM-D data revealed that crosslinking (CHI/ALG)(5) CHI films allows HSA to become adsorbed in physiological conditions. Our results suggested that the biological potential of biopolymers and the mild conditions of the LbL technique turn these natural nanoassemblies into a suitable choice to be used as pH-sensitive coatings.  相似文献   

17.
The electrochemical reduction of mesoxalic acid on polycristalline platinum surfaces has been studied in acid medium. The reaction proceeds through the interaction with adsorbed hydrogen atoms. Malonic acid is proposed as final reaction product.
Elektrochemische Reduktion von Mesoxalsäure auf polykristallinen Platinoberflächen
Zusammenfassung Die elektrochemische Reduktion von Mesoxalsäure auf polykristallinen Platinoberflächen wurde in saurem Medium untersucht. Die Reaktion verläuft über die Wechselwirkung mit adsorbierten Wasserstoffatomen, wobei als Endprodukt Malonsäure entsteht.
  相似文献   

18.
There is still a lack of deep understanding on the reaction kinetics and mechanism of thiol etching of gold. Herein, by using the sensor of quartz crystal microbalance (QCM) as the sacrificial probe, the etching reaction of gold has been studied by employing cysteamine (CS) as a typical thiol etchant. The etching reaction is verified as diffusion-controlled and shows a half-order reaction kinetics. It is demonstrated that intact thiol and amino on CS are both crucial for its etching ability to gold. Applied potentials can affect the electron transfer and hence can be used to regulate the gold etching. Our results also reveal that only two carbon atoms of the spacer between thiol and amino on CS are very critical to the excellent etching ability. This work exhibits a new route to explore the thiol etching reaction of gold and elucidates the reaction kinetics and mechanism.  相似文献   

19.
Adsorption of concanavalin A and lentil lectin on platinum electrode was investigated through electrochemical impedance spectroscopy and cyclic voltammetry. By using ferro/ferricyanide system to probe the electrochemical interface it was possible to model the EIS data with a simple equivalent circuit. The blocking effect for electron transfer reactions observed with these proteins, indicated that they readily adsorb on platinum surface and that the degree of adsorption is related to the state of the proteins. When the proteins are in the presence of divalent cations (Ca2+ and Mn2+) they adsorb less strongly than in their absence. There is also evidence that at least convanavalin A retains its biological activity in the adsorbed state.  相似文献   

20.
Preferential and exchange adsorption of polymers differing in molar mass and/or chemical nature under dynamic conditions were investigated using on-line size-exclusion chromatography (SEC). The sample investigated dissolved in an appropriate solvent was injected into a small adsorption–desorption column packed with nonporous silica. A nonadsorbed or desorbed fraction of the polymer was directed into an SEC column for determination of both the amount and the molecular characteristics. This approach is in many aspects superior to other techniques for studies of polymer adsorption onto solid surfaces due to its low sample and time consumption. At a low degree of surface coverage, adsorption and desorption of macromolecules were rapid and were affected by the rate of supply of macromolecules to the adsorbent surface. The exchange between macromolecules at the stage of surface saturation was found to depend on the mean molar masses of preadsorbed and displacing polymer species and possibly also on the chain flexibility of the macromolecules. It was shown that the preferential adsorption driven by the chain-length difference upon saturation of the adsorbent surface was more noticeable if the preadsorbed macromolecules were smaller. Received: 7 April 1999 Accepted in revised form: 21 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号