首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The colouristic and fluorescent characteristics of a new composite material based on a PAMAM dendrimer of second generation whose periphery is modified with 4-N,N-dimethylaminoethylamino-1,8-naphthalimide and polyamide-6 have been investigated. This dendrimer has been investigated with regard to its application as a heterogenic sensor capable of detecting metal cations and protons in aqueous solutions. In the presence of metal cations (Ni2+, Fe2+, Fe3+ and Co2+) and protons the fluorescence intensity of the composite increases due to their coordination with dendrimer molecule. The results obtained reveal the capacity of this system to act as a sensitive sensor of environmental pollution by metal cations and protons. It has been shown that in N,N-dimethylformamide solution the metal cations inhibit the processes of photodegradation of the dendrimer.  相似文献   

2.
A new 4-(N-methylpiperazine)-N-allyl-1,8-naphthalimide with intense yellow-green fluorescence has been synthesized. Then it has been copolymerized with styrene and methylmetacrylate. The photophysical characteristics of the fluorescent dye and its copolymers (poly(St-co-NI) and poly(MAA-co-NI)) have been determined viewing their sensor properties for protons and transition metal cations (Cu2+, Fe3+ and Zn2+). Fluorescence enhancement is the photophysical response of the 4-(N-methylpiperazine)-N-allyl-1,8-naphthalimide to the presence of metal cations and protons, while fluorescence quenching is observed for both copolymers.  相似文献   

3.
The synthesis and basic photophysical characteristics of a novel green fluorescent polyvinylcarbazole polymer containing 4‐N,N‐dimethylaminoethyleneamino‐1,8‐naphthalimide side chains has been described. The ability to sense metal cations has been monitored by fluorescence emission spectroscopy. It is shown that the fluorescent intensity is very sensitive to the Fe2+ cations and the copolymer can be used as an homogeneous and heterogeneous fluorescent sensor for Fe2+ cations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The synthesis of two new green fluorescent poly(propyleneimine) dendrimers from first generation has been described. The new materials are comprised of a 1,8-naphthalimide fluorophore having a substituent at C-4 position. The substituent in the first case is a N,N-dimethylaminoethylamino group while in the second one it is N-methylpiperazine. The spectroscopic and photophysical characteristics of the new dendrimers determined in organic solvent of different polarity have been presented. Both dendrimers show substantial increases in their fluorescence intensity in the presence of metal cations (Zn2+, Co2+, Ni2+, Pb2+, Mn2+, Cu2+, Fe3+ and Ag+) and protons. The influence of the photoinduced electron transfer on their sensing properties has been discussed.  相似文献   

5.
A new fluorescent sensor 1 based on the rhodamine amide-armed homotrioxacalix[3]arene was synthesized, and its sensing behavior toward metal ions was investigated by UV–vis and fluorescence spectroscopies. Upon the addition of metal cations (Sb3+, Fe3+, Ni2+), a significant fluorescent enhancement in the range of 500–600 nm and colorimetric change was observed.  相似文献   

6.
A new blue emitting 2‐allyl‐6‐(2‐dimethylaminoethyloxy)‐benzo[de]isoquinoline‐1,3‐dione, bearing an allylic group has been designed and synthesized. Bulk radical copolymerization has been carried out in order to prepare a fluorescent copolymer, based on styrene. The main photophysical characteristics of the monomeric and polymeric fluorophores have been investigated both in the absence and presence of metal cations and protons. It has been found that the monomeric naphthalimide can be used as a sensor for protons and Zn2+, Ni2+, Ce3+, Cu2+, Co2+, Ag+ cations. The polymeric fluorophore has been shown to be a selective chemosensor for Cu2+ cations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
New fluorescent poly(amidoamine) (PAMAM) dendrimers, comprising 4-ethylamino-1,8-naphthalmide units on the periphery have been synthesized. Their photophysical properties in organic solvents of different polarity have been determined. The photodegradation of the dendrimers in organic solvents has been investigated. The effect of the coordination of the dendrimer with transition metal cations in N,N-dimethylformamide solution has been discussed.  相似文献   

8.
A new yellow-green fluorescent tripod based 1,8-naphthalimide has been synthesized and characterised. Its photophysical properties have been investigated in organic solvents of different polarity. The effect that the metal ions (Cd2+, Co2+, Zn2+, Mn2+, Mg2+, Ni2+, Pb2+, Cu2+, Ba2+, Fe3+ and Ag+) produce upon the fluorescent intensity of acetonitrile solutions of the tripod has been discussed viewing its potential applications as a detector for metal cations. The influence of protons on the fluorescence intensity of the tripod in DMF and methanol–water (1:4 v/v) solutions has also been investigated.  相似文献   

9.
Hui Xu  Xiwen Zeng  Huiling Dai 《中国化学》2011,29(10):2165-2168
A new fluorescent chemosensor based upon 1,8‐naphthalimide and 8‐hydroxyquinoline was synthesized, and its fluorescent properties in the presence of different metal cations (Hg2+, Ag+, Zn2+, Fe2+, Cd2+, Pb2+, Ca2+, Cu2+, Mg2+, and Ba2+) were investigated. It displayed fluorescence quenching with some heavy and transition metal (HTM) ions, and the quenching strongly depended on the nature of HTM ions.  相似文献   

10.
A new rhodamine-based fluorescent chemosensor (1) for transition metal cations was synthesized by one-step facile condensation of rhodamine B and 2-aminopyridine. Without metal cations, 1 is colorless and nonfluorescent, whereas addition of metal cations (Fe3+, Hg2+, Pb2+, and Fe2+) leads to an obvious color change to pink and an appearance of orange fluorescence.  相似文献   

11.
Structural and energy characteristics of N,N′-di(9-anthrylmethyl)-1,2-diaminoethane complexes with Z2+, Cd2+, and Hg2+ cations were investigated applying the method DFT (B3LYP/LanL2DZ). The interaction of the diamine with the metal cations results in formation of complexes with various types of structures containing a di-, tri-, or tetracoordinated metal, the latter complexes being the most stable. In all types of complexes the energy of complexing decreases in the series Zn2+, Hg2+, Cd2+ and is determined by combined effect of steric and orbital factors.  相似文献   

12.
Salts of sulfonated polyphenylquinoxaline (SPPQ) containing alkaline earth metal ions—Mg2+, Ca2+, and Ba2+—were synthesized. The paper considers their solubilities, the properties of solutions, and thermal stability in comparison with analogous characteristics of SPPQ salts with alkali metals. The introduction of alkaline earth metal cations into SPPQ affords soluble polymeric salts having high thermal stability. Solutions of SPPQ salts in N-methylpyrrolidone (N-MP) containing Mg2+, Ca2+, and Ba2+ ions do not exhibit polyelectrolyte properties, unlike solutions of SPPQ salts in which the counterions are Li+, Na+, and K+. Solutions of SPPQ and its salts in N-MP can be converted to water-soluble form by dialysis. This opens up new prospects for using the polymeric salts.  相似文献   

13.
The paper reports on the synthesis of two new benzanthron derivatives with intense yellow-orange fluorescence and their copolymers with styrene. The photophysical characteristics of the new low and high molecular weight fluorescent compounds have been studied in organic solvents of different polarity. The effect of the chemical nature of the C-3 substituent on the photophysical properties of the new dyes is discussed. The complexes formed between the benzanthron fluorophores and metal cations in solution have been studied with regard to potential applications as fluorescent sensors for metal ion contamination. The results show that the C-3 substituent determines a selective response to the presence of Cu2+ cations. In the case of copolymers the effect of the metal cations on the fluorescence intensity is negligible.  相似文献   

14.
Acridino-diaza-20-crown-6 ether derivatives as new turn-on type fluorescent chemosensors with an excellent functionality and photophysical properties have been designed and synthesized for metal ion-selective optochemical sensing applications. Spectroscopic studies revealed that in an acetonitrile-based semi-aqueous medium, the sensor molecules exhibited a remarkable fluorescence enhancement with high sensitivity only toward Zn2+, Al3+ and Bi3+, among 23 different metal ions. Studies on complexation showed a great coordinating ability of logK > 4.7 with a 1:1 complex stoichiometry in each case. The detection limits were found to be from 59 nM to micromoles. The new ionophores enabled an optical response without being affected either by the pH in the range of 5.5–7.5, or the presence of various anions or competing metal ions. Varying the N-substituents of the new host-backbone provides diverse opportunities in both immobilization and practical applications without influencing the molecular recognition abilities.  相似文献   

15.
Sensitive and accurate detection of specific metal ions is important for sensor development and can advance analytical science and support environmental and human medical examinations. Fluorescent proteins (FPs) can be quenched by specific metal ions and spectroscopically show a unique fluorescence-quenching sensitivity, suggesting their potential application as FP-based metal biosensors. Since the characteristics of the fluorescence quenching are difficult to predict, spectroscopic analysis of new FPs is important for the development of FP-based biosensors. Here we reported the spectroscopic and structural analysis of metal-induced fluorescence quenching of the photoconvertible fluorescent protein DendFP. The spectroscopic analysis showed that Fe2+, Fe3+, and Cu2+ significantly reduced the fluorescence emission of DendFP. The metal titration experiments showed that the dissociation constants (Kd) of Fe2+, Fe3+, and Cu2+ for DendFP were 24.59, 41.66, and 137.18 μM, respectively. The tetrameric interface of DendFP, which the metal ions cannot bind to, was analyzed. Structural comparison of the metal-binding sites of DendFP with those of iq-mEmerald and Dronpa suggested that quenchable DendFP has a unique metal-binding site on the β-barrel that does not utilize the histidine pair for metal binding.  相似文献   

16.
Two series of di-ionizable calix[4]arene-1,2-crown-5 and -crown-6 ethers in cone conformations are synthesized. The ionizable groups are oxyacetic acid moieties and N-(X)sulfonyl oxyacetamide units with X=methyl, phenyl, 4-nitrophenyl, and trifluoromethyl, which ‘tunes’ their acidity. For competitive solvent extraction of alkaline earth metal cations from aqueous solutions into chloroform, the new ligands with N-(X)sulfonyl carbamoyl groups are efficient extractants with Ba2+ selectivity. On the other hand, the dicarboxylic acid analogues exhibit little selectivity in extraction of alkaline earth metal cations. For single species extractions of Pb2+, the ligands with both types of ionizable groups show very good extractions abilities. In single species extractions of Hg2+, the N-(X)sulfonyl carboxamide ligands are highly efficient, in contrast to the dicarboxylic acid compounds. Influences of the ionizable group identity, the crown ether ring size, and the presence of upper-rim p-tert-butyl groups on divalent metal ion extraction are explored.  相似文献   

17.
A new rhodamine-based chemosensor was synthetized through a modified copper-catalyzed [3+2]-cycloaddition of an azidocoumarin with an alkynyl-rhodamine. Its sensing properties toward various metal cations in aqueous solutions were investigated by colorimetric changes, UV–vis and fluorescence spectroscopies. The sensor exhibited a high selectivity for Cr2+ over Cr3+ and other divalent cations such as Cu2+, Mg2+, Zn2+, Ca2+, Cd2+, Co2+, Hg2+ and Ni2+. The linear range of detection by fluorescence spectroscopy is 0.07–3.5 mM, with a detection limit of ca. 64 μM. The binding mode of Cr2+ with the sensor was rationalized through experimental evidences.  相似文献   

18.
A new pyrene-containing fluorescent sensor has been synthesized from 2,3,3-trimethylindolenine. Spectroscopic and photophysical properties of sensor are presented. The large change in fluorescence intensity (I/I0 = 0.13) at 381 nm and affinity to Hg2+ over other cations such as K+, Na+, Ca2+, Mg2+, Pb2+, and Cu2+ make this compound a useful chemosensor for Hg2+ detection in hydrophilic media. The sensor (6.0 × 10−6 M) displays significant fluorescence quenching upon addition of Hg2+ in pH 7.4 HEPES buffer without excimer formation. Job’s plot analysis shows the binding stoichiometry to be 2:1 (host/guest).  相似文献   

19.
A rhodamine‐based colorimetric and fluorescent pH chemosensor ( RhA ) was designed and synthesized via a coupling reaction between rhodamine ethylenediamine and succinic anhydride. RhA showed excellent pH response in aqueous solutions. In addition, common cations (Na+, K+, Ag+, Mg2+, Ca2+, Pb2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Al3+, Cr3+, Fe3+, Au3+, Pt2+, and Ru2+) did not interfere with the pH response. As it has the potential to be used as a portable pH sensor, RhA was immobilized on activated cellulose paper using N,N'‐dicyclohexylcarbodiimide (DCC) and N,N'‐dimethylpyridin‐4‐amine (DMAP) as the coupling reagent to obtain a composite pH sensor ( CP‐RhA ). CP‐RhA was characterized by ATR‐FTIR, UV–vis, and fluorescence spectroscopy, and by scanning electron microscopy (SEM). CP‐RhA showed a rapid response in the pH range 1–8 through color and fluorescence changes. DFT calculations showed a blue‐shifted spectrum in the protonated form compared to the neutral form. Moreover, the pH sensor paper could be reused by dipping in NaOH. Thus, our work demonstrates the potential of the rhodamine dye composite for visualizing pH changes in real systems.  相似文献   

20.
The synthesis of two new 2,7-disubstituted phenanthrene-based bis oximes is described. The ability of these two compound for complexing heavy metal cations have been studied and complexation constants and complex stoichiometry for Cr3+ and Fe3+ complex have been determined. The fluorescent properties of ligand 2 make this compound able to act as a sensor able to discriminate between Cr3+ and Fe3+. Detection limits for these two cations have been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号