首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
施工网络计划优化的极值种群遗传算法   总被引:3,自引:0,他引:3  
针对普通遗传算法用于施工网络计划优化的缺点,通过种群划分与极值搜索,建立了网络计划优化的极值种群改进遗传算法模型,有效地避免了陷入局部极值点,应用证明,该算法与普通遗传算法相比,具有优化速度快、求解精度高,全局寻优能力强等优点,尤其适合于大型复杂工程网络的优化计算。  相似文献   

2.
To perform specific tasks in dynamic environments, robots are required to rapidly update trajectories according to changing factors. A continuous trajectory planning methodology for serial manipulators based on non-convex global optimization is presented in this paper. First, a kinematic trajectory planning model based on non-convex optimization is constructed to balance motion rapidity and safety. Then, a model transformation method for the non-convex optimization model is presented. In this way, the accurate global solution can be obtained with an iterative solver starting from arbitrary initializations, which can greatly improve the computational accuracy and efficiency. Furthermore, an efficient initialization method for the iterative solver based on multivariable-multiple regression is presented, which further speeds up the solution process. The results show that trajectory planning efficiency is significantly enhanced by model transformation and initialization improvement for the iterative solver. Consequently, real-time continuous trajectory planning for serial manipulators with many degrees of freedom can be achieved, which lays a basis for performing dynamic tasks in complex environments.  相似文献   

3.
M.G. Perhinschi 《PAMM》2002,1(1):482-483
The design of a fuzzy logic based controller for an uninhabited airplane using genetic algorithms for parameter optimization is illustrated. The airvehicle mission requires that a prescribed trajectory be followed with a satisfactory accuracy. Fuzzy control modules are present in each of the four control channels. Inputs are position and velocity errors. The parameters of the fuzzy controller are: trapezoidal membership functions, five linguistic values, and height defuzzification method associated with peak value. The scaling factors of the fuzzy controller are optimized by means of a genetic algorithm such that, a performance index, based on errors from a stationary flight path, is minimized. The genetic algorithm is based on binary genetic representation, an elitist roulette wheel selection technique and two genetic operators: mutation and crossover. The performance of the resulting optimal fuzzy controller is assessed through numerical simulation.  相似文献   

4.
An integrated optimization production planning and scheduling based on alternant iterative genetic algorithm is proposed here. The operation constraints to ensure batch production successively are determined in the first place. Then an integrated production planning and scheduling model is formulated based on non-linear mixed integer programming. An alternant iterative method by hybrid genetic algorithm (AIHGA) is employed to solve it, which operates by the following steps: a plan is given to find a schedule by hybrid genetic algorithm; in turn, a schedule is given to find a new plan using another hybrid genetic algorithm. Two hybrid genetic algorithms are alternately run to optimize the plan and schedule simultaneously. Finally a comparison is made between AIHGA and a monolithic optimization method based on hybrid genetic algorithm (MOHGA). Computational results show that AIHGA is of higher convergence speed and better performance than MOHGA. And the objective values of the former are an average of 12.2% less than those of the latter in the same running time.  相似文献   

5.
Bacterial memetic algorithm for offline path planning of mobile robots   总被引:1,自引:0,他引:1  
The goal of the path planning problem is to determine an optimal collision-free path between a start and a target point for a mobile robot in an environment surrounded by obstacles. This problem belongs to the group of combinatorial optimization problems which are approached by modern optimization techniques such as evolutionary algorithms. In this paper the bacterial memetic algorithm is proposed for path planning of a mobile robot. The objective is to minimize the path length and the number of turns without colliding with an obstacle. The representation used in the paper fits well to the algorithm. Memetic algorithms combine evolutionary algorithms with local search heuristics in order to speed up the evolutionary process. The bacterial memetic algorithm applies the bacterial operators instead of the genetic algorithm??s crossover and mutation operator. One advantage of these operators is that they easily can handle individuals with different length. The method is able to generate a collision-free path for the robot even in complicated search spaces. The proposed algorithm is tested in real environment.  相似文献   

6.
ABSTRACT. In many spatial systems the interaction between various regions decreases dramatically with distance. This suggests that local trade-offs may be more important than global ones in land use planning and that a decentralized, parallel optimization of the individual regions may be an attractive supplement to more centralized optimization approaches. In this paper, we solve a forest planning problem using a series of decentralized approaches. The approaches can be characterized as self-organizing algorithms and are modeled in the framework of a cellular automaton. We compare our results with those obtained by more centralized approaches, viz. a large sample approach, simulated annealing, and a genetic algorithm. We find that the self-organizing algorithms generally converge much faster to solutions which are at least as good as those obtained by simulated annealing and the genetic algorithm.  相似文献   

7.
It is desirable that an algorithm in unconstrained optimization converges when the guessed initial position is anywhere in a large region containing a minimum point. Furthermore, it is useful to have a measure of the rate of convergence which can easily be computed at every point along a trajectory to a minimum point. The Lyapunov function method provides a powerful tool to study convergence of iterative equations for computing a minimum point of a nonlinear unconstrained function or a solution of a system of nonlinear equations. It is surprising that this popular and powerful tool in the study of dynamical systems is not used directly to analyze the convergence properties of algorithms in optimization. We describe the Lyapunov function method and demonstrate how it can be used to study convergence of algorithms in optimization and in solutions of nonlinear equations. We develop an index which can measure the rate of convergence at all points along a trajectory to a minimum point and not just at points in a small neighborhood of a minimum point. Furthermore this index can be computed when the calculations are being carried out.  相似文献   

8.
Metaheuristic optimization algorithms have become popular choice for solving complex and intricate problems which are otherwise difficult to solve by traditional methods. In the present study an attempt is made to review the hybrid optimization techniques in which one main algorithm is a well known metaheuristic; particle swarm optimization or PSO. Hybridization is a method of combining two (or more) techniques in a judicious manner such that the resulting algorithm contains the positive features of both (or all) the algorithms. Depending on the algorithm/s used we made three classifications as (i) Hybridization of PSO and genetic algorithms (ii) Hybridization of PSO with differential evolution and (iii) Hybridization of PSO with other techniques. Where, other techniques include various local and global search methods. Besides giving the review we also show a comparison of three hybrid PSO algorithms; hybrid differential evolution particle swarm optimization (DE-PSO), adaptive mutation particle swarm optimization (AMPSO) and hybrid genetic algorithm particle swarm optimization (GA-PSO) on a test suite of nine conventional benchmark problems.  相似文献   

9.
Random-key genetic algorithms were introduced by Bean (ORSA J. Comput. 6:154–160, 1994) for solving sequencing problems in combinatorial optimization. Since then, they have been extended to handle a wide class of combinatorial optimization problems. This paper presents a tutorial on the implementation and use of biased random-key genetic algorithms for solving combinatorial optimization problems. Biased random-key genetic algorithms are a variant of random-key genetic algorithms, where one of the parents used for mating is biased to be of higher fitness than the other parent. After introducing the basics of biased random-key genetic algorithms, the paper discusses in some detail implementation issues, illustrating the ease in which sequential and parallel heuristics based on biased random-key genetic algorithms can be developed. A survey of applications that have recently appeared in the literature is also given.  相似文献   

10.
B-spline curves and surfaces are generally used in computer aided design (CAD), data visualization, virtual reality, surface modeling and many other fields. Especially, data fitting with B-splines is a challenging problem in reverse engineering. In addition to this, B-splines are the most preferred approximating curve because they are very flexible and have powerful mathematical properties and, can represent a large variety of shapes efficiently [1]. The selection of the knots in B-spline approximation has an important and considerable effect on the behavior of the final approximation. Recently, in literature, there has been a considerable attention paid to employing algorithms inspired by natural processes or events to solve optimization problems such as genetic algorithms, simulated annealing, ant colony optimization and particle swarm optimization. Invasive weed optimization (IWO) is a novel optimization method inspired from ecological events and is a phenomenon used in agriculture. In this paper, optimal knots are selected for B-spline curve fitting through invasive weed optimization method. Test functions which are selected from the literature are used to measure performance. Results are compared with other approaches used in B-spline curve fitting such as Lasso, particle swarm optimization, the improved clustering algorithm, genetic algorithms and artificial immune system. The experimental results illustrate that results from IWO are generally better than results from other methods.  相似文献   

11.
This paper presents a kind of dynamic genetic algorithm based on a continuous neural network, which is intrinsically the steepest decent method for constrained optimization problems. The proposed algorithm combines the local searching ability of the steepest decent methods with the global searching ability of genetic algorithms. Genetic algorithms are used to decide each initial point of the steepest decent methods so that all the initial points can be searched intelligently. The steepest decent methods are employed to decide the fitness of genetic algorithms so that some good initial points can be selected. The proposed algorithm is motivated theoretically and biologically. It can be used to solve a non-convex optimization problem which is quadratic and even more non-linear. Compared with standard genetic algorithms, it can improve the precision of the solution while decreasing the searching scale. In contrast to the ordinary steepest decent method, it can obtain global sub-optimal solution while lessening the complexity of calculation.  相似文献   

12.
Mixed-integer optimization models for chemical process planning typically assume that model parameters can be accurately predicted. As precise forecasts are difficult to obtain, process planning usually involves uncertainty and ambiguity in the data. This paper presents an application of fuzzy programming to process planning. The forecast parameters are assumed to be fuzzy with a linear or triangular membership function. The process planning problem is then formulated in terms of decision making in a fuzzy environment with fuzzy constraints and fuzzy net present value goals. The model is transformed to a deterministic mixed-integer linear program or mixed-integer nonlinear program depending on the type of uncertainty involved in the problem. For the nonlinear case, a global optimization algorithm is developed for its solution. This algorithm is applicable to general possibilistic programs and can be used as an alternative to the commonly used bisection method. Illustrative examples and computational results for a petrochemical complex with 38 processes and 24 products illustrate the applicability of the developed models and algorithms.  相似文献   

13.
In the Port of Singapore, as in many other ports, space has to be allocated in yards for inbound and transit cargo. Requests for container space occur at different times during the planning period, and are made for different quantities and sizes of containers. In this paper, we study space allocation under these conditions. We reduce the problem to a two-dimensional packing problem with a time dimension. Since the problem is NP-hard, we develop heuristic algorithms, using tabu search, simulated annealing, a genetic algorithm and ‘squeaky wheel’ optimization, as solution approaches. Extensive computational experiments compare the algorithms, which are shown to be effective for the problem.  相似文献   

14.
In this paper, we consider a class of nonlinear minimum-maximum optimization problems subject to boundedness constraints on the decision vectors. Three algorithms are developed for finding the min-max point using the concept of solving an associated dynamical system. In the first and third algorithms, solutions are obtained by solving systems of differential equations. The second algorithm is a discrete version of the first algorithm. The trajectories generated by the first and second algorithms may move inside or on the boundary of the constraint set, while the third algorithm ensures that any trajectory that begins inside the constraint region remains in its interior. Sufficient conditions for global convergence of the two algorithms are also established. For illustration, four numerical examples are solved.This work was partially supported by a research grant from the Australian Research Committee.  相似文献   

15.
The difficulty to solve multiple objective combinatorial optimization problems with traditional techniques has urged researchers to look for alternative, better performing approaches for them. Recently, several algorithms have been proposed which are based on the ant colony optimization metaheuristic. In this contribution, the existing algorithms of this kind are reviewed and a proposal of a taxonomy for them is presented. In addition, an empirical analysis is developed by analyzing their performance on several instances of the bi-criteria traveling salesman problem in comparison with two well-known multi-objective genetic algorithms.  相似文献   

16.
This paper describes an application of genetic algorithms to the bus driver scheduling problem. The application of genetic algorithms extends the traditional approach of Set Covering/Set Partitioning formulations, allowing the simultaneous consideration of several complex criteria. The genetic algorithm is integrated in a DSS but can be used as a very interactive tool or a stand-alone application. It incorporates the user's knowledge in a quite natural way and produces solutions that are almost directly implemented by the transport companies in their operational planning processes. Computational results with airline and bus crew scheduling problems from real world companies are presented and discussed.  相似文献   

17.
应用遗传算法(GA)来讨论一个水流问题.这个水流问题曾是不少统计学者用来考察不同试验设计和建模方法的常用案例.通过本例旨在说明遗传算法确为求解复杂系统优化问题的有力工具.  相似文献   

18.
闵涛  张世梅  邹学文 《数学杂志》2007,27(3):348-352
本文研究了二维抛物型方程参数反演问题.利用遗传算法求解此反演问题的方法,把参数反演问题转化为优化问题,通过演化计算方法求解.它从多个初始点开始寻优,借助交叉和变异算子来获得参数的全局最优解.且数值模拟结果表明,具有精度高、编程简单、易于计算机实现等特点.  相似文献   

19.
The present paper describes an approach for generating spatial trajectories in multibody systems including rigid–body rotations such that dynamic criteria such as forces, accelerations, velocities, etc. as well as limiting restrictions for the motion–generating mechanical device, e.g., a robot, can be considered. The task is to find a rigid–body interpolation that fulfills optimality criteria at the target trajectory as well as in the mechanical system. Application of general optimization methods fails due to the difficulty of finding feasible initial guesses that will converge. The present approach proposes to decouple the general problem into two stages, a first stage in which a pure trajectory optimization is carried out without regard of the mechanical system, and a second stage in which the carrying mechanical system is incorporated. The trajectory planning involves the use of splines of 5–th order as well as an SQP optimization for determining the spline support points as design variables. The approach is illustrated for the example of the generalized waiter problem. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号