首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the homotopy perturbation method [He JH. Homotopy perturbation technique. Comput Meth Appl Mech Eng 1999;178:257–62; He JH. A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int J Non-Linear Mech 2000;35(1):37–43; He JH. Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 2004;156:527–39; He JH. Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 2003;135:73–79; He JH. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl Math Comput 2004;151:287–92; He JH. Application of homotopy perturbation method to nonlinear wave equations Chaos, Solitons & Fractals 2005;26:695–700] is applied to solve linear and nonlinear systems of integro-differential equations. Some nonlinear examples are presented to illustrate the ability of the method for such system. Examples for linear system are so easy that has been ignored.  相似文献   

2.
In this paper we extend our results of L. Casasús, W. Al-Hayani [The decomposition method for ordinary differential equations with discontinuities, Appl. Math. Comput. 131 (2002) 245–251] to initial value problems with several types of discontinuities, giving relevant examples of linear and nonlinear cases.  相似文献   

3.
Owing to the importance of differential equations in physics, the existence of solutions for differential equations has been paid much attention. In this paper, the existence of solution are obtained for the nonlinear second order two-point boundary value problem in the reproducing kernel space. Under certain assumptions on right-hand side, we propose constructive proof for the existence result, and a method is presented to obtain the exact solution expressed by the form of series. This paper is a extension of previous paper [Wei Jiang, Minggen Cui, The exact solution and stability analysis for integral equation of third or first kind with singular kernel, Appl. Math. Comput. 202 (2) (2008) 666-674], which extends a method of solving linear problems to present method for solving nonlinear problems.  相似文献   

4.
In this paper, we consider completely generalized nonlinear quasi-variational-like inclusions in Banach spaces and propose an Ishikawa type iterative algorithm for computing their approximate solutions by applying the new notion of Jη-proximal mapping given in [R. Ahmad, A.H. Siddiqi, Z. Khan, Proximal point algorithm for generalized multi-valued nonlinear quasi-variational-like inclusions in Banach spaces, Appl. Math. Comput. 163 (2005) 295–308]. We prove that the approximate solutions obtained by the proposed algorithm converge to the exact solution of our quasi-variational-like inclusions. The results presented in this paper extend and improve the corresponding results of [R. Ahmad, A.H. Siddiqi, Z. Khan, Proximal point algorithm for generalized multi-valued nonlinear quasi-variational-like inclusions in Banach spaces, Appl. Math. Comput. 163 (2005) 295–308; X.P. Ding, F.Q. Xia, A new class of completely generalized quasi-variational inclusions in Banach spaces, J. Comput. Appl. Math. 147 (2002) 369–383; N.J. Huang, Generalized nonlinear variational inclusions with non-compact valued mappings, Appl. Math. Lett. 9(3) (1996) 25–29; A. Hassouni, A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl. 185(3) (1994) 706–712]. Some special cases are also discussed.  相似文献   

5.
We develop a numerical technique for a class of singularly perturbed two-point singular boundary value problems on an uniform mesh using polynomial cubic spline. The scheme derived in this paper is second-order accurate. The resulting linear system of equations has been solved by using a tri-diagonal solver. Numerical results are provided to illustrate the proposed method and to compared with the methods in [R.K. Mohanty, Urvashi Arora, A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives, Appl. Math. Comput., 172 (2006) 531–544; M.K. Kadalbajoo, V.K. Aggarwal, Fitted mesh B-spline method for solving a class of singular singularly perturbed boundary value problems, Int. J. Comput. Math. 82 (2005) 67–76].  相似文献   

6.
Higher order non‐Fickian diffusion theories involve fourth‐order linear partial differential equations and their solutions. A quintic polynomial spline technique is used for the numerical solutions of fourth‐order partial differential equations with Caputo time fractional derivative on a finite domain. These equations occur in many applications in real life problems such as modeling of plates and thin beams, strain gradient elasticity, and phase separation in binary mixtures, which are basic elements in engineering structures and are of great practical significance to civil, mechanical, and aerospace engineering. The quintic polynomial spline technique is used for space discretization and the time‐stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence analysis are also discussed. The numerical results are given, which demonstrate the effectiveness and accuracy of the numerical method. The numerical results obtained in this article are also compared favorably well with the results of (S. S. Siddiqi and S. Arshed, Int. J. Comput. Math. 92 (2015), 1496–1518). © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 445–466, 2017  相似文献   

7.
Yanli Shi 《Applicable analysis》2013,92(12):1421-1432
In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear differential equations by “Shooting” method, and studied existence and uniqueness of solutions of a kind of three-point boundary value problems for nth-order nonlinear differential equations by “Matching” method.  相似文献   

8.
In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a system of mixed equilibrium problems, the set of solutions of a variational inclusion problems for inverse strongly monotone mappings, the set of common fixed points for nonexpansive semigroups and the set of common fixed points for an infinite family of strictly pseudo-contractive mappings in Hilbert spaces. Furthermore, we prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm under some suitable conditions which solves some optimization problems. Our results extend and improve the recent results of Chang et al. (Appl Math Comput 216:51–60, 2010), Hao (Appl Math Comput 217(7):3000–3010, 2010), Jaiboon and Kumam (Nonlinear Anal 73:1180–1202, 2010) and many others.  相似文献   

9.
This paper is Part III of the study on blending surfaces by partial differential equations (PDEs). The blending surfaces in three dimensions (3D) are taken into account by three parametric functions, x(r,t),y(r,t) and z(r,t). The boundary penalty techniques are well suited to the complicated tangent (i.e., normal derivative) boundary conditions in engineering blending. By following the previous papers, Parts I and II in Li (J. Comput. Math. 16 (1998) 457–480; J. Comput. Appl. Math. 110 (1999) 155–176) the corresponding theoretical analysis is made to discover that when the penalty power σ=2, σ=3 (or 3.5) and 0<σ⩽1.5 in the boundary penalty finite element methods (BP-FEMs), optimal convergence rates, superconvergence and optimal numerical stability can be achieved, respectively. Several interesting samples of 3D blending surfaces are provided, to display the remarkable advantages of the proposed approaches in this paper: unique solutions of blending surfaces, optimal blending surfaces in minimum energy, ease in handling the complicated boundary constraint conditions, and less CPU time and computer storage needed. This paper and Li (J. Comput. Math. 16 (1998) 457–480; J. Comput. Appl. Math.) provide a foundation of blending surfaces by PDE solutions, a new trend of computer geometric design.  相似文献   

10.
This paper extends an earlier work [Hosseini MM, Nasabzadeh H. Modified Adomian decomposition method for specific second order ordinary differential equations. Appl Math Comput 2007;186:117–23] to high order and system of differential equations. Solution of these problems is considered by proposed modification of Adomian decomposition method. Furthermore, with providing some examples, the aforementioned cases are dealt with numerically.  相似文献   

11.
Solutions of differential algebraic equations is considered by Adomian decomposition method. In E. Babolian, M.M. Hosseini [Reducing index and spectral methods for differential-algebraic equations, J. Appl. Math. Comput. 140 (2003) 77] and M.M. Hosseini [An index reduction method for linear Hessenberg systems, J. Appl. Math. Comput., in press], an efficient technique to reduce index of semi-explicit differential algebraic equations has been presented. In this paper, Adomian decomposition method is applied to reduced index problems. The scheme is tested for some examples and the results demonstrate reliability and efficiency of the proposed methods.  相似文献   

12.
In the nineties, Van der Houwen et al. (see, e.g., [P.J. van der Houwen, B.P. Sommeijer, J.J. de Swart, Parallel predictor–corrector methods, J. Comput. Appl. Math. 66 (1996) 53–71; P.J. van der Houwen, J.J.B. de Swart, Triangularly implicit iteration methods for ODE-IVP solvers, SIAM J. Sci. Comput. 18 (1997) 41–55; P.J. van der Houwen, J.J.B. de Swart, Parallel linear system solvers for Runge–Kutta methods, Adv. Comput. Math. 7 (1–2) (1997) 157–181]) introduced a linear analysis of convergence for studying the properties of the iterative solution of the discrete problems generated by implicit methods for ODEs. This linear convergence analysis is here recalled and completed, in order to provide a useful quantitative tool for the analysis of splittings for solving such discrete problems. Indeed, this tool, in its complete form, has been actively used when developing the computational codes BiM and BiMD [L. Brugnano, C. Magherini, The BiM code for the numerical solution of ODEs, J. Comput. Appl. Math. 164–165 (2004) 145–158. Code available at: http://www.math.unifi.it/~brugnano/BiM/index.html; L. Brugnano, C. Magherini, F. Mugnai, Blended implicit methods for the numerical solution of DAE problems, J. Comput. Appl. Math. 189 (2006) 34–50]. Moreover, the framework is extended for the case of special second order problems. Examples of application, aimed to compare different iterative procedures, are also presented.  相似文献   

13.
Motivated by the interesting paper [I. Karaca, Discrete third-order three-point boundary value problem, J. Comput. Appl. Math. 205 (2007) 458–468], this paper is concerned with a class of boundary value problems for second-order functional difference equations. Sufficient conditions for the existence of at least one solution of a Sturm–Liouville boundary value problem for second-order nonlinear functional difference equations are established. We allow f to be at most linear, superlinear or sublinear in obtained results.  相似文献   

14.
A new approach for analyzing boundary value problems for linear and for integrable nonlinear PDEs was introduced in Fokas [A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A 53 (1997) 1411–1443]. For linear elliptic PDEs, an important aspect of this approach is the characterization of a generalized Dirichlet to Neumann map: given the derivative of the solution along a direction of an arbitrary angle to the boundary, the derivative of the solution perpendicularly to this direction is computed without solving on the interior of the domain. This is based on the analysis of the so-called global relation, an equation which couples known and unknown components of the derivative on the boundary and which is valid for all values of a complex parameter k. A collocation-type numerical method for solving the global relation for the Laplace equation in an arbitrary bounded convex polygon was introduced in Fulton et al. [An analytical method for linear elliptic PDEs and its numerical implementation, J. Comput. Appl. Math. 167 (2004) 465–483]. Here, by choosing a different set of the “collocation points” (values for k), we present a significant improvement of the results in Fulton et al. [An analytical method for linear elliptic PDEs and its numerical implementation, J. Comput. Appl. Math. 167 (2004) 465–483]. The new collocation points lead to well-conditioned collocation methods. Their combination with sine basis functions leads to a collocation matrix whose diagonal blocks are point diagonal matrices yielding efficient implementation of iterative methods; numerical experimentation suggests quadratic convergence. The choice of Chebyshev basis functions leads to higher order convergence, which for regular polygons appear to be exponential.  相似文献   

15.
To prove the existence of a solution of a two-point boundary value problem for an nth-order operator equation by the a priori estimate method, we study extremal solutions of auxiliary boundary value problems for an nth-order differential equation with simplest right-hand side, which have a unique solution under certain restrictions on the boundary conditions.  相似文献   

16.
We study the reconstruction of the missing thermal and mechanical data on an inaccessible part of the boundary in the case of two‐dimensional linear isotropic thermoelastic materials from overprescribed noisy measurements taken on the remaining accessible boundary part. This inverse problem is solved by using the method of fundamental solutions together with the method of particular solutions. The stabilization of this inverse problem is achieved using several singular value decomposition (SVD)‐based regularization methods, such as the Tikhonov regularization method (Tikhonov and Arsenin, Methods for solving ill‐posed problems, Nauka, Moscow, 1986), the damped SVD and the truncated SVD (Hansen, Rank‐deficient and discrete ill‐posed problems: numerical aspects of linear inversion, SIAM, Philadelphia, 1998), whilst the optimal regularization parameter is selected according to the discrepancy principle (Morozov, Sov Math Doklady 7 (1966), 414–417), generalized cross‐validation criterion (Golub et al. Technometrics 22 (1979), 1–35) and Hansen's L‐curve method (Hansen and O'Leary, SIAM J Sci Comput 14 (1993), 1487–503). © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 168–201, 2015  相似文献   

17.
The method of El-Gendi [El-Gendi SE. Chebyshev solution of differential integral and integro-differential equations. J Comput 1969;12:282–7; Mihaila B, Mihaila I. Numerical approximation using Chebyshev polynomial expansions: El-gendi’s method revisited. J Phys A Math Gen 2002;35:731–46] is presented with interface points to deal with linear and non-linear convection–diffusion equations.The linear problem is reduced to two systems of ordinary differential equations. And, then, each system is solved using three-level time scheme.The non-linear problem is reduced to three systems of ordinary differential. Each one of these systems is, then, solved using three-level time scheme. Numerical results for Burgers’ equation and modified Burgers’ equation are shown and compared with other methods. The numerical results are found to be in good agreement with the exact solutions.  相似文献   

18.
The parallel solution of initial value problems for ordinary differential equations (ODE-IVPs) has received much interest from many researchers in the past years. In general, the possibility of using parallel computing in this setting concerns different aspects of the numerical solution of ODEs, depending on the parallel platform to be used and/or the complexity of the problem to be solved. In particular, in this paper we examine possible extensions of a parallel method previously proposed in the mid-nineties [P. Amodio, L. Brugnano, Parallel implementation of block boundary value methods for ODEs, J. Comput. Appl. Math. 78 (1997) 197–211; P. Amodio, L. Brugnano, Parallel ODE solvers based on block BVMs, Adv. Comput. Math. 7 (1997) 5–26], and analyze its connections with subsequent approaches to the parallel solution of ODE-IVPs, in particular the “Parareal” algorithm proposed in [J.L. Lions, Y. Maday, G. Turinici, Résolution d'EDP par un schéma en temps “pararéel”, C. R. Acad. Sci. Paris, Ser. I 332 (2001) 661–668; Y. Maday, G. Turinici, A parareal in time procedure for the control of partial differential equations, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 387–392].  相似文献   

19.
利用广义黎卡提变换得到了一类二阶非线性脉冲时滞微分方程所有解振动的充分条件,推广了Dz∨urina和Stavroulakis中关于非脉冲方程的相关结果.  相似文献   

20.
The two-grid method is a technique to solve the linear system of algebraic equations for reducing the computational cost. In this study, the two-grid procedure has been combined with the EFG method for solving nonlinear partial differential equations. The two-grid FEM has been introduced in various forms. The well-known two-grid FEM is a three-step method that has been proposed by Bajpai and Nataraj (Comput. Math. Appl. 2014;68:2277–2291) that the new proposed scheme is an ecient procedure for solving important nonlinear partial differential equations such as Navier–Stokes equation. By applying shape functions of IMLS approximation in the EFG method, a new technique that is called interpolating EFG (IEFG) can be obtained. In the current investigation, we combine the two-grid algorithm with the IEFG method for solving the nonlinear Rosenau-regularized long-wave (RRLW) equation. In other hand, we demonstrate that solutions of steps 1, 2, and 3 exist and are unique and also we achieve an error estimate for them. Moreover, three test problems in one- and two-dimensional cases are given which support accuracy and efficiency of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号