首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a method of finite dimensional Markov process (FDMP) approximation for stochastic dynamical systems with time delay. The FDMP method preserves the standard state space format of the system, and allows us to apply all the existing methods and theories for analysis and control of stochastic dynamical systems. The paper presents the theoretical framework for stochastic dynamical systems with time delay based on the FDMP method, including the FPK equation, backward Kolmogorov equation, and reliability formulation. A simple one-dimensional stochastic system is used to demonstrate the method and the theory. The work of this paper opens a door to various studies of stochastic dynamical systems with time delay.  相似文献   

2.
This paper presents control studies of delayed dynamical systems with the help of the method of continuous time approximation (CTA). The CTA method proposes a continuous time approximation of the delayed portion of the response leading to a high and finite dimensional state space formulation of the time-delayed system. Various controls of the system such as LQR and output feedback controls are readily designed with the existing design tools. The properties of the method in frequency domain are also discussed. We have found that time-domain methods such as semi-discretization and CTA, and other numerical integration algorithms can produce highly accurate temporal responses and dominant poles of the system, while missing all the fast and high frequency poles, which explains why many numerical methods can be applied to study the stability of time-delayed systems, and may not be a good tool for control design. Optimal feedback controls for a linear oscillator, collocated and non-collocated feedback controls of an Euler beam, and an experimental demonstration are presented in the paper.  相似文献   

3.
This paper examines dynamical behavior of a nonlinear oscillator with a symmetric potential that models a quarter-car forced by the road profile. The primary, superharmonic and subharmonic resonances of a harmonically excited nonlinear quarter-car model with linear time delayed active control are investigated. The method of multiple scales is utilized to obtain first order approximation of response. We focus on the influence of delay in the system. This naturally gives rise to a delay deferential equation (DDE) model of the system. The effect of time delay and feedback gains of the steady state responses of primary, superharmonic and subharmonic resonances are investigated. By means of Melnikov technique, necessary condition for onset of chaos resulting from homoclinic bifurcation is derived analytically. We describe a method to identify the critical forcing function and time delay above which the system becomes unstable. It is found that proper selection of time-delay shows optimum dynamical behavior. The accuracy of the method is obtained from the fractal basin boundaries.  相似文献   

4.
We consider a class of nonlinear Klein-Gordon equations which are Hamiltonian and are perturbations of linear dispersive equations. The unperturbed dynamical system has a bound state, a spatially localized and time periodic solution. We show that, for generic nonlinear Hamiltonian perturbations, all small amplitude solutions decay to zero as time tends to infinity at an anomalously slow rate. In particular, spatially localized and time-periodic solutions of the linear problem are destroyed by generic nonlinear Hamiltonian perturbations via slow radiation of energy to infinity. These solutions can therefore be thought of as metastable states. The main mechanism is a nonlinear resonant interaction of bound states (eigenfunctions) and radiation (continuous spectral modes), leading to energy transfer from the discrete to continuum modes. This is in contrast to the KAM theory in which appropriate nonresonance conditions imply the persistence of invariant tori. A hypothesis ensuring that such a resonance takes place is a nonlinear analogue of the Fermi golden rule, arising in the theory of resonances in quantum mechanics. The techniques used involve: (i) a time-dependent method developed by the authors for the treatment of the quantum resonance problem and perturbations of embedded eigenvalues, (ii) a generalization of the Hamiltonian normal form appropriate for infinite dimensional dispersive systems and (iii) ideas from scattering theory. The arguments are quite general and we expect them to apply to a large class of systems which can be viewed as the interaction of finite dimensional and infinite dimensional dispersive dynamical systems, or as a system of particles coupled to a field. Oblatum: 6-XI-1998 & 12-VI-1998 / Published online: 14 January 1999  相似文献   

5.
The reaction-diffusion equations are approximated by a fully discrete system: a Legendre-Galerkin approximation for the space variables and a semi-implicit scheme for the time integration. The stability and the convergence of the fully discrete system are established. It is also shown that, under a restriction on the space dimension and the growth rate of the nonlinear term, the approximate attractors of the discrete finite dimensional dynamical systems converge to the attractor of the original infinite dimensional dynamical systems. An error estimate of optimal order is derived as well without any further regularity assumption.  相似文献   

6.
研究了Duffing-Van der Pol振子的主参数共振响应及其时滞反馈控制问题.依平均法和对时滞反馈控制项Taylor展开的截断得到的平均方程表明,除参数激励的幅值和频率外,零解的稳定性只与原方程中线性项的系数和线性反馈有关,但周期解的稳定性还与原方程中非线性项的系数和非线性反馈有关.通过调整反馈增益和时滞,可以使不稳定的零解变得稳定.非零周期解可能通过鞍结分岔和Hopf分岔失去稳定性,但选择合适的反馈增益和时滞,可以避免鞍结分岔和Hopf分岔的发生.数值仿真的结果验证了理论分析的正确性.  相似文献   

7.
This paper presents a symbolic method for a delayed state feedback controller (DSFC) design for linear time-periodic delay (LTPD) systems that are open loop unstable and its extension to incorporate regulation and tracking of nonlinear time-periodic delay (NTPD) systems exhibiting chaos. By using shifted Chebyshev polynomials, the closed loop monodromy matrix of the LTPD system (or the linearized error dynamics of the NTPD system) is obtained symbolically in terms of controller parameters. The symbolic closed loop monodromy matrix, which is a finite dimensional approximation of an infinite dimensional operator, is used in conjunction with the Routh–Hurwitz criterion to design a DSFC to asymptotically stabilize the unstable dynamic system. Two controllers designs are presented. The first design is a constant gain DSFC and the second one is a periodic gain DSFC. The periodic gain DSFC has a larger region of stability in the parameter space than the constant gain DSFC. The asymptotic stability of the LTPD system obtained by the proposed method is illustrated by asymptotically stabilizing an open loop unstable delayed Mathieu equation. Control of a chaotic nonlinear system to any desired periodic orbit is achieved by rendering asymptotic stability to the error dynamics system. To accommodate large initial conditions, an open loop controller is also designed. This open loop controller is used first to control the error trajectories close to zero states and then the DSFC is switched on to achieve asymptotic stability of error states and consequently tracking of the original system states. The methodology is illustrated by two examples.  相似文献   

8.
New phenomena arising when a linear dynamical system is defined on an infinite dimensional Banach space, although negligible from an engineering standpoint when only a finite time-interval is considered, become crucial when the asymptotic (feedback) behavior of the system is of interest. Pathologies with respect to the correspondent finite dimensional case are displayed even when the operator acting on the state is bounded.In particular, although in such case, the classical controllability and observability theory admits a natural generalization to infinite dimensions, the finite dimensional relationships between controllability and stabilizability fails. A few examples are given of systems that are approximately controllable and yet are not stabilizable: Moreover, such examples are drawn from a class of systems that can never be exactly controllable. The analysis is carried out using the perturbation theory of the spectrum. Another new feature of the infinite dimensionality of the state space is that even if the spectrum of an operator has the max of its real part equal to 0, yet the associated homogeneous differential equation may be globally asymptotically stable: Its consequence on stabilizability is also examined.  相似文献   

9.
This Note introduces recent developments in the analysis of inventory systems with partial observations. The states of these systems are typically conditional distributions, which evolve in infinite dimensional spaces over time. Our analysis involves introducing unnormalized probabilities to transform nonlinear state transition equations to linear ones. With the linear equations, the existence of the optimal feedback policies are proved for two models where demand and inventory are partially observed. In a third model where the current inventory is not observed but a past inventory level is fully observed, a sufficient statistic is provided to serve as a state. The last model serves as an example where a partially observed model has a finite dimensional state. In that model, we also establish the optimality of the basestock policies, hence generalizing the corresponding classical models with full information. To cite this article: A. Bensoussan et al., C. R. Acad. Sci. Paris, Ser. I 341 (2005).  相似文献   

10.
Yali Dong  Fengwei Yang 《Complexity》2015,21(2):267-275
This article investigates the finite‐time stability, stabilization, and boundedness problems for switched nonlinear systems with time‐delay. Unlike the existing average dwell‐time technique based on time‐dependent switching strategy, largest region function strategy, that is, state‐dependent switching control strategy is adopted to design the switching signal, which does not require the switching instants to be given in advance. Some sufficient conditions which guarantee finite‐time stable, stabilization, and boundedness of switched nonlinear systems with time‐delay are presented in terms of linear matrix inequalities. Detail proofs are given using multiple Lyapunov‐like functions. A numerical example is given to illustrate the effectiveness of the proposed methods. © 2014 Wiley Periodicals, Inc. Complexity 21: 267–275, 2015  相似文献   

11.
We develop and test two novel computational approaches for predicting the mean linear response of a chaotic dynamical system to small change in external forcing via the fluctuation–dissipation theorem. Unlike the earlier work in developing fluctuation–dissipation theorem-type computational strategies for chaotic nonlinear systems with forcing and dissipation, the new methods are based on the theory of Sinai–Ruelle–Bowen probability measures, which commonly describe the equilibrium state of such dynamical systems. The new methods take into account the fact that the dynamics of chaotic nonlinear forced-dissipative systems often reside on chaotic fractal attractors, where the classical quasi-Gaussian formula of the fluctuation–dissipation theorem often fails to produce satisfactory response prediction, especially in dynamical regimes with weak and moderate degrees of chaos. A simple new low-dimensional chaotic nonlinear forced-dissipative model is used to study the response of both linear and nonlinear functions to small external forcing in a range of dynamical regimes with an adjustable degree of chaos. We demonstrate that the two new methods are remarkably superior to the classical fluctuation–dissipation formula with quasi-Gaussian approximation in weakly and moderately chaotic dynamical regimes, for both linear and nonlinear response functions. One straightforward algorithm gives excellent results for short-time response while the other algorithm, based on systematic rational approximation, improves the intermediate and long time response predictions.  相似文献   

12.
Parametric identification for a class of nonlinear objects with lumped parameters described by systems of ordinary differential equations is studied. The problem is to recover the coefficients of a dynamical system depending on the phase state. For that purpose, the phase space is subdivided into a finite set of subsets or zones in which the coefficients are assumed to be constant or linear functions of state. Once the coefficients in such a form are obtained, interpolation and approximation can be used to represent the coefficients as functions of the phase variables.  相似文献   

13.
The freezing method for ordinary differential systems is extended to a class of semilinear difference equations in a Hilbert space, whose linear parts have slowly varying coefficients and nonlinearities satisfying local Lipschitz conditions. The main methodology is based on a combined use of recent norm estimates for operator-valued functions with the freezing method as well as the multiplicative representation of solutions. Thus, explicit stability and boundedness conditions are derived. Applications to infinite dimensional delay difference systems are discussed.  相似文献   

14.
This paper is concerned with the controllability of nonlinear fractional dynamical systems with time varying multiple delays and distributed delays in control defined in finite dimensional spaces. Sufficient conditions for controllability results are obtained using the Schauder fixed point theorem and the controllability Grammian matrix which is defined by Mittag–Leffler matrix function. Examples are provided to illustrate the theory.  相似文献   

15.
The model is a linear system defined on Banach (state and control) spaces, with the operator acting on the state only the infinitesimal generator of a strongly continuous semigroup. The stabilizability problem of expressing the control through a bounded operator acting on the state as to make the resulting feedback system globally asymptotically stable is considered. On the negative side, and in contrast with the finite dimensional theory, a few counter examples are given of systems which are densely controllable in the space and yet are not stabilizable, even if some further “nice properties” hold. Use is made of the notion of essential spectrum and its stability under relatively compact perturbations. On the positive side, it is shown, however, that for large classes of systems of physical interest (classical selfadjoint boundary value problems, delay equations, etc.) controllability on a suitable finite dimensional subspace still yields stabilizability on the whole space.  相似文献   

16.
17.
We consider the problem of the synthesis of a bounded control reducing a dynamical system to the given terminal state in a finite time. Two approaches to solve the problem, based on methods of the theory of stability of motion, are provided. One of them is applicable to nonlinear Lagrange mechanical systems with undetermined parameters, while another is applicable to linear systems. The characteristic property is that the Lyapunov functions are defined implicitly in both cases. We make a comparison between these approaches.  相似文献   

18.
The article deals with the controllability results for fractional dynamical systems with prescribed controls represented by the fractional integrodifferential equation in finite dimensional spaces. Sufficient conditions for the controllability results of nonlinear fractional dynamical systems are obtained using the contraction mapping principle. Examples are included to illustrate the theory.  相似文献   

19.
Given an unstable hybrid stochastic functional differential equation, how to design a delay feedback controller to make it stable? Some results have been obtained for hybrid systems with finite delay. However, the state of many stochastic differential equations are related to the whole history of the system, so it is necessary to discuss the feedback control of stochastic functional differential equations with infinite delay. On the other hand, in many practical stochastic models, the coefficients of these systems do not satisfy the linear growth condition, but are highly nonlinear. In this paper, the delay feedback controls are designed for a class of infinite delay stochastic systems with highly nonlinear and the influence of switching state.  相似文献   

20.
In this paper, we study a class of partial functional differential equations with finite delay, whose linear part is not necessarily densely defined but satisfies the Hille–Yosida condition. Using the classical theory about global attractors in infinite dimensional dynamical systems, we establish some sufficient conditions for guaranteeing the existence of a global attractor under small delays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号