首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Molecular dynamics was used to investigate defect production induced by displacement cascades in ordered intermetallic alloys NiAl and Ni3Al. The composite potentials obtained from the embedded atom potentials (EAM) and the universal function of Biersack and Ziegler were used. The number of point defects and their final structure produced by displacement cascades were investigated and compared with the standard NRT prediction. Crystalline structure, atomic mixing and chemical disordering were also studied during the evolution of the cascades, by measuring their characteristic parameters in the cells of the subdivided crystal.  相似文献   

2.
Physics of the Solid State - Molecular dynamics simulation was employed in this study to investigate the atomistic mechanisms involved in the Ni–Al alloy homogeneous deformation and the...  相似文献   

3.
4.
5.
6.
Physics of the Solid State - In the model of radiation-induced segregation based on the first and second Fick laws and taking into account the inverse Kirkendall effect, concentration profiles of...  相似文献   

7.
Russian Physics Journal - The paper presents research into the structure and phase composition of Ni–Al–Co alloy modified by rhenium (~3 аt.%) alloying. Observations are carried...  相似文献   

8.
The thermal expansion coefficients (α) of Fe1-xNix alloys are calculated by means of the Debye-Grüneisen model, which uses the input parameters calculated from density functional theory (DFT) with collinear spin alignments. The various atomic configurations of fcc and bcc supercells with x being 0–0.5 are calculated to conduct the composition-specific analysis. Thermodynamic analysis is employed to facilitate the evaluation of α in bulk alloys, where the calculated supercells are used as the canonical ensemble. Such calculated α exhibits very similar composition-dependency in comparison with the experimental data from literature, particularly providing the well-known Invar effect at 65 wt% of Fe. The calculations also demonstrated that the pressure-derived magnetic frustration, i.e. the magneto-volume effect, is strongly correlated with the Invar effect. The present approach combining the Debye-Grüneisen formalism and the collinear DFT calculation is shown to be a comprehensive theoretical framework for analysis on the thermal expansion properties in metal alloys.  相似文献   

9.
Interfaces between austenite and a crossing-twins microstructure consisting of four variants of 2H-martensite are optically observed in a single crystal of Cu–Al–Ni shape memory alloy. It is shown that these non-classical interfaces form during thermally induced transitions from compound twinned 2H-martensite into austenite, which is in agreement with theoretical predictions. Individual twinning systems and martensitic variants involved in the observed microstructure are identified. The corresponding volume fractions are estimated based on the compatibility conditions at the habit plane and the macroscopic geometry of the interface. Miscellaneous topics related to the observed microstructures (formation mechanism and planeness of the interface) are briefly discussed.  相似文献   

10.
The effect of intermetallic nanoparticles like Ni3Al and nanoparticles of an Fe-rich bcc phase on the evolution of vacancy defects in an fcc Fe–34.2 wt% Ni–5.4 wt% Al model alloy under electron irradiation at elevated temperatures (423 and 573 K) was investigated using positron annihilation spectroscopy. Nanosized (1–8 nm) particles, which are homogeneously distributed in the alloy matrix, cause a several-fold decrease in the accumulation of vacancies as compared to their accumulation in a quenched alloy. This effect depends on the size and the type of nanoparticles. The effect of the nanoparticles increases when the irradiation temperature increases. The irradiation-induced nucleation and the growth of intermetallic nanoparticles were also observed in an alloy pre-aged at 1023 K under irradiation at 573 K. Thus, a quantum-dot-like positron state within ultrafine intermetallic particles, which we revealed earlier, allows control of the evolution of coherent precipitates like Ni3Al, along with vacancy defects, during irradiation and subsequent annealing. Possible mechanisms of the absorption of point defects by nanoparticles are discussed.  相似文献   

11.
D. Kulikov§  M. Hou 《哲学杂志》2013,93(2):141-172
The properties of trapping centres in – as grown – Tl4GaIn3S8 layered single crystals were investigated in the temperature range of 10–300 K using thermoluminescence (TL) measurements. TL curve was analysed to characterize the defects responsible for the observed peaks. Thermal activation energies of the trapping centres were determined using various methods: curve fitting, initial rise and peak shape methods. The results indicated that the peak observed in the low-temperature region composed of many overlapped peaks corresponding to distributed trapping centres in the crystal structure. The apparent thermal energies of the distributed traps were observed to be shifted from ~12 to ~125 meV by increasing the illumination temperature from 10 to 36 K. The analysis revealed that the first-order kinetics (slow retrapping) obeys for deeper level located at 292 meV.  相似文献   

12.
An extreme discrepancy in the observed martensite structure when studying by means of optical and scanning microscopes in the same sample has been found. The results have been compared with data from the literature. An assumption on the effect of sample heating on the process of transformation of elastic spreads of fragments in the peripheral region of martensitic laminae into plastic spreads has been put forward.  相似文献   

13.
Pressure dependence of the irradiation-induced ferromagnetism recently found in Fe–Ni invar alloys was investigated under hydrostatic pressures up to 7.5 GPa. A rectangular sheet of Fe–30.2 at% Ni invar alloy was irradiated with 80 MeV Xe ions. The range was much smaller than the thickness of the sample. The Curie temperature of the irradiated part increased by 63 K, and the absolute value of the pressure coefficient, dTC/dp   was smaller than that of non-irradiated part. The relation p≈(TC0-TC)np(TC0-TC)n holds with n=2n=2 for both non-irradiated and irradiated part. The itinerant character was not so much modified by irradiation.  相似文献   

14.
The corrosion reaction of four Fe–Mn–Al alloys exposed to a cycling, dry–humid, SO2 (0.001% by volume) polluted atmosphere was studied. ICEMS, XPS, AES-SAM and transmission Mössbauer spectroscopy at different temperatures were employed to characterize the corrosion products. The analytical results indicate that (i) ferrihydrite is the main component of the rust; (ii) there is an abundant presence of Mn2+ and SO3 2–/SO4 2– on the top of the corrosion layer, the concentration of SO4 2– increasing with the number of cycles; and (iii) the magnetic hyperfine pattern exhibited by the series of low-temperature spectra of the rust is quite different from that observed in the rust formed under similar corrosive environments on iron and weathering steel. This latter finding is correlated with a slow rate of transformation of the Fe3+ species formed at the early stages of corrosion into -FeOOH, the usual final product of this type of corrosion processes. The sulphate anions, abundant inside the electrolyte during the wet periods, could be incorporated to the ferrihydrite structure being responsible for the Mössbauer spectral pattern recorded from the corrosion products at low temperatures.  相似文献   

15.
The density functional theory is used to study the local magnetic moments in Fe–Al alloys depending on concentration (from 29 to 44 at% Al) and the Fe nearest environment. We have found three different solutions for the system: a spin-spiral wave (SSW) which has a minimum energy and two collinear states, a ferromagnetic one and a state with both positive and negative Fe magnetic moments (the Fe atoms with many neighboring Al atoms around them have negative magnetic moments, while the other Fe atoms—positive). Both the SSW and the negative Fe moments agree with the experiments. Magnetization curves taken from the literature are analyzed. The assumption of percolation character of the size distribution of magnetic clusters describes well the experimental superparamagnetic behavior above 150 K.  相似文献   

16.
Technical Physics - The effect of hafnium dioxide (HfO2) disperse nanoparticles on the shape and parameters of stress–strain curves for the compression of Cu–13.5 wt %Al–4.0 wt...  相似文献   

17.
Dissolution of large particles in DC-cast 7xxx aluminum alloys is one of the primary objectives of the homogenization process. A mathematical model to describe and predict this complex thermodynamical and kinetical process is of great significance. In this paper, the details of a diffusion-limited dissolution model, based on the thinning, discontinuation and full dissolution (TDFD) mechanism, to predict the dissolution of the Al17(Fe3.2, Mn0.8)Si2 particles is described. The model is capable of predicting the volume fraction and thickness of the particles during homogenization at different temperatures and time intervals. The predicted results are in good agreement with measurements using quantitative X-ray diffraction (QXRD) and quantitative field emission gun-scanning electron microscopy (QSEM). The model predictions of the supersaturation parameter, interface position, interface movement rate of the planar surfaces and the cylindrical edges, and the effect of the occurrence of discontinuities on the dissolution extent are presented.  相似文献   

18.
19.
In the present work, the effects of Ni atoms and vacancy concentrations(0.1%, 0.5%, 1.0%) on the formation process of Cu solute clusters are investigated for Fe–1.24%Cu–0.62%Ni alloys by molecular dynamics(MD) simulations. The presence of Ni is beneficial to the nucleation of Cu precipitates and has little effect on coarsening rate in the later stage of aging. This result is caused by reducing the diffusion coefficient of Cu clusters and the dynamic migration of Ni atoms. Additionally, there are little effects of Ni on Cu precipitates as the vacancy concentration reaches up to 1.0%,thereby explaining the embrittlement for reactor pressure vessel(RPV) steel. As a result, the findings can hopefully provide the important information about the essential mechanism of Cu cluster formation and a better understanding of ageing phenomenon of RPV steel. Furthermore, these original results are analyzed with a simple model of Cu diffusion, which suggests that the same behavior could be observed in Cu-containing alloys.  相似文献   

20.
The luminescence spectra and decay curves for the 4G5/2 level of Sm3+ ions in 55.95P2O5+14K2O+6KF+14.95BaO+9Al2O3+0.1Sm2O3 glass, referred to as PKFBASm01, have been studied as a function of pressure up to 40.5 GPa at room temperature. With the increase in pressure, a continuous red shift of the 4G5/26H9/2, 7/2, 5/2 transitions and a progressive increase in the magnitude of the crystal-field splittings for these transitions are observed. The decay curves for the 4G5/2 level of the Sm3+ ions in PKFBASm01 glass are found to exhibit single exponential behavior at ambient pressure and become non-exponential at higher pressures, accompanied by shortening of lifetimes. A generalized Yokoto–Tanimoto model has been used to explain the pressure-induced non-exponential nature of the decay curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号