首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are concerned here with a nonlinear quadratic integral equation (QIE). The existence of a unique solution will be proved. Convergence analysis of Adomian decomposition method (ADM) applied to these type of equations is discussed. Convergence analysis is reliable enough to estimate the maximum absolute truncated error of Adomian’s series solution. Two methods are used to solve these type of equations; ADM and repeated trapezoidal method. The obtained results are compared.  相似文献   

2.
The Adomian decomposition method (ADM) is applied to solve both linear and nonlinear boundary value problems (BVPs) for fourth-order integro-differential equations. The numerical results obtained with minimum amount of computation or mathematics compare reasonably well with exact solutions.  相似文献   

3.
Most engineering problems, especially heat transfer equations, are mostly nonlinear. Homotopy analysis method (HAM) has been applied to solve many differential equations. In this paper, we use HAM to detect the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. The results of the homotopy analysis method are compared with those of the exact solution and Adomian’s decomposition method (ADM) solved by Cihat Arslanturk.  相似文献   

4.
In this paper, the homotopy-perturbation method (HPM) is employed to obtain approximate analytical solutions of the Klein–Gordon and sine-Gordon equations. An efficient way of choosing the initial approximation is presented. Comparisons with the exact solutions, the solutions obtained by the Adomian decomposition method (ADM) and the variational iteration method (VIM) show the potential of HPM in solving nonlinear partial differential equations.  相似文献   

5.
ADM-Padé technique is a combination of Adomian decomposition method (ADM) and Padé approximants. We solve two nonlinear lattice equations using the technique which gives the approximate solution with higher accuracy and faster convergence rate than using ADM alone. Bell-shaped solitary solution of Belov–Chaltikian (BC) lattice and kink-shaped solitary solution of the nonlinear self-dual network equations (SDNEs) are presented. Comparisons are made between approximate solutions and exact solutions to illustrate the validity and the great potential of the technique.  相似文献   

6.
The Adomian Decomposition Method is employed in the solution of the two dimensional laminar boundary layer of Falkner–Skan equation for wedge. This work aims at the solution of momentum equation in the case of accelerated flow and decelerated flow with separation. The Adomian Decomposition Method is provided an analytical solution in the form of an infinite power series. The effect of Adomian polynomials terms is considered on accuracy of the results. The velocity profiles in boundary layer are obtained. Results show a good accuracy compared to the exact solution.  相似文献   

7.
In this article, we implement a new analytical technique; He’s variational iteration method for solving the coupled KdV and Boussinesq-like equations. In this method, first general Lagrange multipliers are introduced to construct correction functional for the problems. The multipliers in the functional can be identified optimally via the variational theory. Next the components of obtained iteration formulae defined by partial sum of other sequence, specially constructed according to Adomian’s decomposition method (ADM). Also according to ADM we used a partial sum of Adomian polynomials instead of nonlinear terms in iteration formulae. The initial approximations can be freely chosen with possible unknown constants, which can be determined by imposing the initial conditions. The results reveal that the proposed method is very effective and can be applied for other nonlinear problems.  相似文献   

8.
This paper shows that the homotopy analysis method, the well-known method to solve ODEs and PDEs, can be applied as well as to solve linear and nonlinear integral equations with high accuracy. Comparison of the present method with Adomian decomposition method (ADM), which is well-known in solving integral equations, reveals that the ADM is only special case of the present method. Also, some linear and nonlinear examples are presented to show high efficiency and illustrate the steps of the problem resolution.  相似文献   

9.
In this paper we propose a new modified recursion scheme for the resolution of multi-order and multi-point boundary value problems for nonlinear ordinary and partial differential equations by the Adomian decomposition method (ADM). Our new approach, including Duan’s convergence parameter, provides a significant computational advantage by allowing for the acceleration of convergence and expansion of the interval of convergence during calculations of the solution components for nonlinear boundary value problems, in particular for such cases when one of the boundary points lies outside the interval of convergence of the usual decomposition series. We utilize the boundary conditions to derive an integral equation before establishing the recursion scheme for the solution components. Thus we can derive a modified recursion scheme without any undetermined coefficients when computing successive solution components, whereas several prior recursion schemes have done so. This modification also avoids solving a sequence of nonlinear algebraic equations for the undetermined coefficients fraught with multiple roots, which is required to complete calculation of the solution by several prior modified recursion schemes using the ADM.  相似文献   

10.
We are concerned here with a nonlinear multi-term fractional differential equation (FDE). The existence of a unique solution will be proved. Convergence analysis of Adomian decomposition method (ADM) applied to these type of equations is discussed. Convergence analysis is reliable enough to estimate the maximum absolute truncated error of Adomian’s series solution. Some numerical examples are given, their ADM solutions are compared with a numerical method solutions. This numerical method is introduced in Podlubny (Fractional Differential Equations, Chap. 8, Academic Press, San Diego, 1999).  相似文献   

11.
On a new analytical method for flow between two inclined walls   总被引:1,自引:0,他引:1  
Efficient analytical methods for solving highly nonlinear boundary value problems are rare in nonlinear mechanics. The purpose of this study is to introduce a new algorithm that leads to exact analytical solutions of nonlinear boundary value problems and performs more efficiently compared to other semi-analytical techniques currently in use. The classical two-dimensional flow problem into or out of a wedge-shaped channel is used as a numerical example for testing the new method. Numerical comparisons with other analytical methods of solution such as the Adomian decomposition method (ADM) and the improved homotopy analysis method (IHAM) are carried out to verify and validate the accuracy of the method. We show further that with a slight modification, the algorithm can, under certain conditions, give better performance with enhanced accuracy and faster convergence.  相似文献   

12.
In this work, we apply the homotopy analysis method to solve fin problems with temperature-dependent thermal conductivity. The results are compared with the solutions obtained by the Adomian decomposition method (ADM), homotopy perturbation method (HPM) and with the Taylor series expansion method as well. The results of the comparisons have shown that the ADM and HPM are just an approximation of the present study and the accuracy of the solution obtained by the present study is much better than the latter algorithms.  相似文献   

13.
The purpose of this study is to implement Adomian–Pade (Modified Adomian–Pade) technique, which is a combination of Adomian decomposition method (Modified Adomian decomposition method) and Pade approximation, for solving linear and nonlinear systems of Volterra functional equations. The results obtained by using Adomian–Pade (Modified Adomian–Pade) technique, are compared to those obtained by using Adomian decomposition method (Modified Adomian decomposition method) alone. The numerical results, demonstrate that ADM–PADE (MADM–PADE) technique, gives the approximate solution with faster convergence rate and higher accuracy than using the standard ADM (MADM).  相似文献   

14.
The purpose of the present paper is to show that the well‐known homotopy analysis method for solving ordinary and partial differential equations can be applied to solve linear and nonlinear integral equations of Volterra's type with high accuracy as well. Comparison of the present method with Adomian decomposition method (ADM), a well‐known method to solve integral equations, reveals that the ADM is only especial case of the present method. Furthermore, some illustrating examples such as linear, nonlinear and singular integral equations of Volterra's type are given to show high efficiency with reliable accuracy of the method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, an effective technique for solving a class of singular two point boundary value problems is proposed. This technique is based on the Adomian decomposition method (ADM) and Green’s function. The technique relies on constructing Green’s function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on ADM, the proposed recursive scheme avoids solving a sequence of nonlinear algebraic or transcendental equations for the undetermined coefficients. The approximate solution is obtained in the form of series with easily calculable components. For the completeness, the convergence and error analysis of the proposed scheme is supplemented. Moreover, the numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed scheme. The results reveal that the method is very effective, straightforward, and simple.  相似文献   

16.
The Adomian decomposition method and the asymptotic decomposition method give the near-field approximate solution and far-field approximate solution, respectively, for linear and nonlinear differential equations. The Padé approximants give solution continuation of series solutions, but the continuation is usually effective only on some finite domain, and it can not always give the asymptotic behavior as the independent variables approach infinity. We investigate the global approximate solution by matching the near-field approximation derived from the Adomian decomposition method with the far-field approximation derived from the asymptotic decomposition method for linear and nonlinear differential equations. For several examples we find that there exists an overlap between the near-field approximation and the far-field approximation, so we can match them to obtain a global approximate solution. For other nonlinear examples where the series solution from the Adomian decomposition method has a finite convergent domain, we can match the Padé approximant of the near-field approximation with the far-field approximation to obtain a global approximate solution representing the true, entire solution over an infinite domain.  相似文献   

17.
In this paper we propose a new modified recursion scheme for the resolution of boundary value problems (BVPs) for second-order nonlinear ordinary differential equations with Robin boundary conditions by the Adomian decomposition method (ADM). Our modified recursion scheme does not incorporate any undetermined coefficients. We also develop the multistage ADM for BVPs encompassing more general boundary conditions, including Neumann boundary conditions.  相似文献   

18.
In this paper, a novel Adomian decomposition method (ADM) is developed for the solution of Burgers' equation. While high level of this method for differential equations are found in the literature, this work covers most of the necessary details required to apply ADM for partial differential equations. The present ADM has the capability to produce three different types of solutions, namely, explicit exact solution, analytic solution, and semi-analytic solution. In the best cases, when a closed-form solution exists, ADM is able to capture this exact solution, while most of the numerical methods can only provide an approximation solution. The proposed ADM is validated using different test cases dealing with inviscid and viscous Burgers' equations. Satisfactory results are obtained for all test cases, and, particularly, results reported in this paper agree well with those reported by other researchers.  相似文献   

19.
In this paper, we propose a new convergence proof of the Adomian’s decomposition method (ADM), applied to the generalized nonlinear system of partial differential equations (PDE’s) based on new formula for Adomian polynomials. The decomposition scheme obtained from the ADM yields an analytical solution in the form of a rapidly convergent series for a system of conservation laws. Systems of conservation laws is presented, we obtain the stability of the approximate solution when the system changes type. We show with an explicit example that the latter property is true for general Cauchy problem satisfying convergence hypothesis. The results indicate that the ADM is effective and promising.  相似文献   

20.
In this paper, we present an efficient numerical algorithm for solving a general class of nonlinear singular boundary value problems. This present algorithm is based on the Adomian decomposition method (ADM) and Green’s function. The method depends on constructing Green’s function before establishing the recursive scheme. In contrast to the existing recursive schemes based on ADM, the proposed numerical algorithm avoids solving a sequence of transcendental equations for the undetermined coefficients. The approximate series solution is calculated in the form of series with easily computable components. Moreover, the convergence analysis and error estimation of the proposed method is given. Furthermore, the numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed scheme. The numerical results reveal that the proposed method is very effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号