首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The heat effects of mixing a sodium glycylglycinate water solution with a solvent containing from 0.0 to 0.8 mole fraction of ethanol are measured by means of calorimetry at 298.15 K. The enthalpies of sodium glycylglycinate and glycylglycinate ion transfer from water to water–ethanol solutions of different compositions are calculated. The increase of the concentration of nonaqueous component in solution leads to higher endothermicity of glycylglycinate ion transfer, resulting in weaker solvation. The contribution from the enthalpy of glycylglycinate ion resolvation to the heat effects of its complexation reactions with transition metal ions is assessed.  相似文献   

3.
Journal of Thermal Analysis and Calorimetry - This study aimed to investigate the metastable zone width (MSZW) and the nucleation order of carbamazepine–saccharin (CBZ–SAC) co-crystals...  相似文献   

4.
In this study, ethanol–ammonium recovery using a distillation system was evaluated. The experimental design was used to evaluate the possibility of solvent re-use and the influence of distillation on the recovery yield, ethanol–ammonium ratio (catalyst concentration) and size of the obtained nanostructures. The synthesised silica nanospheres from distilled ethanol–ammonium were compared in terms of size and shape (ammonium concentration) to the nanostructures obtained from filtrated and centrifuged solvents. The results showed that the process for ethanol–ammonium recovery proposed in this work, provides a large potential for reducing the amount of waste from the synthesis.  相似文献   

5.
The system water–benzene–ethanol was used to illustrate the complexity of spontaneous emulsification, when water-poor emulsions are brought in contact with water. In the first case, an O/W emulsion located close to the plait point in the system was used. The aqueous phase in the emulsion was incompatible with water, and a strong spontaneous emulsification to an O/W between the two liquids took place in the water layer close to the interface between layers. In the second case, a W/O emulsion, also close to the plait point, was brought in contact with water. Now, the spontaneous emulsification between the water and the oil phase of the original emulsion to an O/W emulsion also took place in the water layer forming a distinct emulsion layer beneath the interface.  相似文献   

6.
《Fluid Phase Equilibria》1999,157(1):29-40
Scaled particle theory was used to derive a general expression for the salt effect parameter, K, of isobaric vapor–liquid equilibrium for ethanol–water-1-1 type electrolytic systems, which appears in the Furter equation. This expression was essentially a sum of two terms: 1, the hard sphere interaction term calculated by Masterton–Lee's equation, 2, the soft sphere interaction term calculated by Y. Hu's molecular thermodynamical model, in which the diameters of nacked ions were replaced by that of solvated ions, the solvation coefficients (i.e., in the radio of the latter to the former) were taken to be adjustable parameters, their magnitude implies the ionic solvation rules. A correlation equation for the local dielectrical constant around central ions with liquid concentration was obtained by mapping out experimental points. The calculated salt effect parameters of 9 ethanol–water-1–1 type electrolytic systems were in good agreement with the literature values within the wide range of liquid concentration.  相似文献   

7.
The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane–acetone–water and glycerol–ethanol–water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.  相似文献   

8.
Barium carbonate (BaCO3) particles have been obtained by the precipitation reaction of CO2 bubbles to barium hydroxide [Ba(OH)2] in the ethanol–water mixed solvents. Various morphologies, from rounded peanut, leaf-like, rod, and needle particles, were controlled by the precipitation step, where CO2 gas was fed to Ba(OH)2 in ethanol–water mixed solvent. The CO2 gas as a carbonate source and Ba(OH)2 slurry as a barium ion source are dissolved in the mixed solvents, within the solubility limit, to precipitate. The reactants dissolve progressively while they precipitate to BaCO3. Ba(OH) 2 slurry becomes translucent and opaque while the reaction proceeds. It becomes more opaque, upon which the dissolution of Ba(OH)2 proceeds and BaCO3 precipitates. The opaqueness of the products depends on the particle size of BaCO3 in the product. The characteristics of BaCO3 were confirmed by the X-ray diffraction (XRD), transmission electron microscope (TEM), and electrophoretic light scattering methods. The amount of water in the mixed solvents and of Ba(OH) 2 in the reaction batch is related to the reaction rate in the nucleation and growing step, so that it was possible to control the shape of particles. Based on the understanding of the size and morphology of BaCO3 in the solid/liquid–gas system, it was possible to obtain a well-dispersed average 40-nm BaCO3 colloid.  相似文献   

9.
SO2–ethanol–water (SEW) fractionation process is a highly attractive platform for future lignocellulosic Biorefineries. Its governing advantages include high flexibility in the selection of the raw material, simple and efficient recovery of fractionation chemicals, absence of carbohydrate degradation (both cellulose and hemicelluloses), and high reaction rates. The process is suitable for production of various carbohydrate- and lignin-based products including papermaking pulp, glucose, bioalcohols and lignosulfonates. The present paper addresses the possibility of producing dissolving pulp from spruce using SEW fractionation followed by ECF bleaching with and without hot caustic extraction. Comprehensive characterisation of chemical and macromolecular properties of the SEW dissolving pulps was complemented by determining the quality of viscose. The comparison with conventional viscose-grade acid sulfite pulps revealed close proximity in all properties. Therefore, considering the advantages of SEW process, it is suggested as a possible replacement for acid sulfite process in dissolving pulp manufacturing.  相似文献   

10.
Electronic absorption spectroscopy and fluorescence spectroscopy were used to study conditions for the formation of associates of amphiphilic phorbins and chlorins in an ethanol–water system. The conditions and degree of disaggregation in the presence of solubilizing additives of nonionic surfactants (Tween 80) and biocompatible polymers (polyethylene glycol and polyvinylpyrrolidone) were also investigated. The propensity of the macroheterocycles based on chlorophyll a to association in water-alcoholic solutions decreases on going from covalently bound dimeric structures to monomeric ones, on going from phorbins to chlorins and on accumulating hydrophilic glycol or positively charged alkylammonium fragments in the molecule. Among the considered solubilizers, the nonionic surfactant Tween 80 emerged as the most efficient means for destroying chlorin associates in water–alcohol solutions with a high content of water.  相似文献   

11.
Hemoglobin (Hb) was immobilized on a glassy carbon electrode (GCE) surface by konjac glucomannan (KGM). KGM hydrogel films on GCE have relatively high stabilities in aqueous–ethanol mixtures. The entrapped hemoglobin undergoes fast direct electron transfer reactions in aqueous–organic solvent mixtures. The peak current is bigger, the peak-to-peak separation smaller and the formal potential observed in the cyclic voltammogram is more negative for Hb–KGM/GCE in ethanol–PBS compared to Hb–KGM/GCE in PBS. The electrochemical properties of the Hb in aqueous–organic solution are almost unchanged from with those observed for the purely aqueous solution, suggesting that water pools in the KGM hydrogel play an important role in preventing changes in conformation and making proteins unreactive with polar organic solvents. The immobilized Hb was able to catalyze the reduction of nitric oxide, peroxides (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, 2-butanone peroxide), and the dehalogenation of haloethanes (hexachloroethane, pentachloroethane, tetrachloroethane, etc.). The stability and reproducibility of the modified electrode meant that it could be used to determine these substances.   相似文献   

12.
The enthalpies of the acid dissociation of glycyl-glycyl-glycine zwitterions and triglycinium ions are determined calorimetrically in water–ethanol solvents containing 0.0, 0.10, 0.30, and 0.50 molar fractions of ethanol at ionic strengths of 0.1 (maintained by sodium perchlorate) and Т = 298.15 K. It is found that increasing the ethanol content in the solvent enhances the endothermic effect of triglycinium ion dissociation and reduces the endothermic effect of glycyl-glycyl-glycine dissociation. The results are discussed in terms of the solvation thermodynamics.  相似文献   

13.
A mild and efficient visible light–mediated one-pot multicomponent tandem approach to construct 4-oxo-tetrahydroindoles in ethanol–water medium at room temperature has been described. The characteristics of reported methodology are the utilization of visible light, an ideal source of energy to generate C C and C N bonds from commercially available substrates namely dimedone, phenacyl bromides, and amines. The presented protocol is highly compatible for developing 4-oxo-tetrahydroindole derivatives with improved selectivity and high yields. Moreover, metal-free synthesis, environmental friendly solvent, easy workup process, high atom economy, cost-effectiveness, short reaction time, and broad substratescope are the major advantages of reported protocol.  相似文献   

14.
15.
The impact of electron–electron collisions on the spatial relaxation of electrons in the column-anode plasma of a glow discharge, acted upon by a space-independent electric field and initiated by a constant influx at the cathode side of the plasma, is investigated in inert gas plasmas. The investigations are based on a new method for numerically solving the one-dimensional inhomogeneous Boltzmann equation of the electrons including electron–electron interaction in weakly ionized, collision-dominated plasmas. A detailed analysis of the spatial behaviour of the velocity distribution function and relevant macroscopic properties of the electrons is given for various degrees of ionization and electric field strengths. A significant impact of the electron–electron collisions on the relaxation structure and the resultant relaxation length already at relatively low ionization degrees has been found for low to medium electric fields.  相似文献   

16.
One-pot achievement of ethyl levulinate from cassava was conducted in ethanol-water system over several simple sulfate salt catalysts.Al_2(SO_4)_3 catalyst had the best performance in synthesizing ethyl levulinate comparing with those of a series of sulfate salts.The highest yields of ethyl levulinate was up to39.27%as well as 7.78%levulinate acid when cassava was catalyzed in ethanol medium by adding 10 wt%water.~(13)C and ~1H NMR spectroscopic investigations confirmed that isomerization of glucose to fructose over Al_2(SO_4)_3 catalyst is an important step in producing ethyl levulinate and levulinate acid.Due to aggregations of Al~(3+) under hydrothermal conditions,tiny amount of Al~(3+) were detected in filtrate at the percentage of 0.32%even if in absolute water.Bronsted and Lewis acids could improve the yield of ethyl levulinate and levulinate acid by synergistic effect.All results suggested that A1_2(SO_4)_3 was a simple and efficient catalyst for ethyl levulinate and levulinate acid production.  相似文献   

17.
Alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures were prepared and tested. The sodium alginate membrane was water soluble and mechanically weak but it showed promising performance for the pervaporation dehydration. To control the water solubility the sodium alginate membrane was crosslinked ionically using various divalent and trivalent ions. Among them the alginate membrane crosslinked with Ca2+ ion showed the highest pervaporation performance in terms of the flux and separation factors.  相似文献   

18.
This work is an extension of previous research results reported by our team (Colloid Polym Sci 291:2385–2389, 2013), where monodisperse, large-scale, and high-solid-content latexes of poly(n-butyl acrylate) were obtained with the particle coagulation method induced by the electrolyte. However, large-scale polystyrene latex particle is difficult to synthesize with this approach; moreover, demulsification phenomena easily take place especially in high solid content. In this article, a new approach to prepare large-scale polystyrene latex particle was proposed. Methanol was added to aqueous phases to decrease the interfacial tension between the polymer particle surface and continual phases, further decreasing interfacial free energy. Consequently, the surfactant molecules would loosely pack on the polymer particle surface, which is favored by particle coagulation. Experimental investigations showed that the final polystyrene particle scale only reaches to 93.5 nm when the methanol/water ratio is equal to 0:100, but the particle size attains 270 nm when the methanol/water ratio is equal to 30:70. These results indicated that polystyrene particle coagulation can be induced by methanol by varying the surfactant molecule adsorption on the particle surface. This investigation also provided a new simple approach to prepare large-scale, stable latex particles.  相似文献   

19.
Journal of Solid State Electrochemistry - Performance characteristics of the solid-state potentiometric sensors, based on natural sulfide minerals pyrite and chalcopyrite, are assayed in aqueous...  相似文献   

20.
The impact of solvent composition as well as inorganic salt content and type on carbon xerogel structure was investigated. Carbon xerogels were derived from the sol–gel polycondensation of resorcinol with furfural in a water–methanol–inorganic salt solution. As inorganic salts, NaCl, NH4ClO4 and FeCl3 were used. In order to conduct an accurate examination of the carbon xerogel structures and textures, inorganic salts were removed prior to carbonization. The xerogel structures can be tailored according to the water/methanol ratio and, to a lesser extent, according to the inorganic salt content and type in the starting solution. As a result, a significant amount of salt can be introduced to the gel network of the desired structure. The morphology and physical properties of the organic xerogels, carbon xerogels and their composites were characterized by means of SEM, N2 sorption and XRD. It was found that samples derived from mixtures with FeCl3 manifest well developed mesoporosity and depleated microporosity in comparison to samples prepared from mixtures with NaCl and NH4ClO4. Iron ions chemically bond to the xerogel matrix and cause its partial graphitization during the carbonization process, resulting in enhanced mesoporosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号