首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical investigation is performed into the nonlinear dynamic behavior of a clamped–clamped micro-beam actuated by a combined DC/AC voltage and subject to a squeeze-film damping effect. An analytical model based on a nonlinear deflection equation and a linearized Reynolds equation is proposed to describe the deflection of the micro-beam under the effects of the electrostatic actuating force. The deflection of the micro-beam is investigated under various actuating conditions by solving the analytical model using a hybrid numerical scheme comprising the differential transformation method and the finite difference approximation method. It is shown that the numerical results for the dynamic pull-in voltage of the clamped–clamped micro-beam deviate by no more than 2.04% from those presented in the literature based on the conventional finite difference scheme. The effects of the AC voltage amplitude, excitation frequency, residual stress, and ambient pressure on the center-point displacement of the micro-beam are systematically explored. Moreover, the actuation conditions which ensure the stability of the micro-beam are identified by means of phase portraits. Overall, the results presented in this study confirm that the hybrid numerical method provides an accurate means of analyzing the complex nonlinear behavior of common electrostatically-actuated microstructures.  相似文献   

2.
This paper presents a comprehensive comparison study between the generalized differential quadrature (GDQ) and the well-known global Galerkin method for analysis of pull-in behavior of nonlinear micro-electro-mechanical coupled systems. The nonlinear governing integro-differential equation for double clamped MEMS devices which was derived using variational principle by the authors [Sadeghian H, Rezazadeh G, Osterberg PM. Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches. J Microelectromech Syst 2007;16(6):1334–40] is discretized by applying Galerkin and GDQ methods. The divergence instability or pull-in phenomenon is analyzed. Obtained results are compared with the results of the pervious works. The Galerkin method is implemented with effect of number of used shape functions. Different types of trail functions on calculated pull-in voltage are examined.Furthermore, compare to one term and two terms truncation Galerkin method, it is observed that the GDQ with small number of grid points (non-uniform) performs accurate results for nonlinear micro-electro-mechanical coupled behavior which requires a large number of grid points at high-order approximation.  相似文献   

3.
This study investigates the influence of surface effect on the nonlinear behavior of an electrostatically actuated circular nanoplate. The Casimir force, surface effects, and the electrostatic force are modelled. In performing the analysis, the nonlinear governing equation of a circular nanoplate is solved using a hybrid computational scheme combining a differential transformation and finite differences. The method is used to model systems found in previous literature using different methods, producing consistent results, thus verifying that it is suitable for treatment of the nonlinear electrostatic coupling phenomenon. The obtained results from numerical methods demonstrated that the relationship between the thickness, radius, and gap size of a circular nanoplate, and its pull-in voltage, is scale-dependent. The model exhibits size-dependent behavior, showing that surface effects significantly influence the dynamic response of circular nanoplate actuators. Moreover, the influence of surface stress on the pull-in voltage of circular nanoplate is found to be more significant than the influence of surface elastic modulus. Finally, the effects of actuation voltage, excitation frequency, and surface effects on the dynamic behavior of the nanoplate are examined through use of phase portraits. Overall, the results show that the using hybrid method here presented is a suitable technique for analyzing nonlinear behavior characteristic of circular nanoplates.  相似文献   

4.
《Applied Mathematical Modelling》2014,38(21-22):5239-5255
The strong nonlinear behavior usually exists in rotor systems supported by oil-film journal bearings. In this paper, the partial derivative method is extended to the second-order approximate extent to predict the nonlinear dynamic stiffness and damping coefficients of finite-long journal bearings. And the nonlinear oil-film forces approximately represented by dynamic coefficients are used to analyze nonlinear dynamic performance of a symmetrical flexible rotor-bearing system via the journal orbit, phase portrait and Poincaré map. The effects of mass eccentricity on dynamic behaviors of rotor system are mainly investigated. Moreover, the computational method of nonlinear dynamic coefficients of infinite-short bearing is presented. The nonlinear oil-film forces model of finite-long bearing is validated by comparing the numerical results with those obtained by an infinite-short bearing-rotor system model. The results show that the representation method of nonlinear oil-film forces by dynamic coefficients has universal applicability and allows one easily to conduct the nonlinear dynamic analysis of rotor systems.  相似文献   

5.
In the present study by considering the small-scale effects, the dynamic instability of fully clamped and simply supported nanoplates is studied in the attendance of electrostatic, Casimir as well as thermal forces. To this end, by applying the nonlocal elasticity theory of Eringen along with the classical plate theory, the dynamic equilibrium equation of nanoplates is obtained by incorporating the in-plane thermal and transverse intermolecular distributed loads. The solution of the obtained nonlinear governing equation is done using the Galerkin method and the dynamic pull-in instability voltage of the nanoplates is compared with the available experimental results. Finally, the simultaneous effects of thermal force as well as nonlocal parameter on the dynamic response of nanoplates are examined in the presence of Casimir force in detail.  相似文献   

6.
In this paper, the effect of the Casimir force on pull-in parameters of cantilever type nanomechanical switches is investigated by using a distributed parameter model. In modeling of the electrostatic force, the fringing field effect is taken into account. The model is nonlinear due to the inherent nonlinearity of the Casimir and electrostatic forces. The nonlinear differential equation of the model is transformed into the integral form by using the Green’s function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The pull-in parameters of the switch are computed in three cases including nanoactuators without applied voltages, microswitches, and the general case of nanocantilevers. Nanoactuators without applied voltages are studied to determine the detachment length and the minimum initial gap of freestanding nanocantilevers, which are the basic design parameters for NEMS switches. The pull-in parameters of microswitches are investigated as a special case of our study by neglecting the Casimir effect and the results are verified through comparison with other works published in the literature. The general case of nanocantilevers is studied considering coexistence of the electrostatic and Casimir forces. The results of the distributed parameter model are compared with the lumped parameter model.  相似文献   

7.
非线性边界滑移挤压膜流动   总被引:1,自引:0,他引:1  
用一种包含初始滑移长度和临界剪切率的非线性边界滑移模型研究了两个球体间的挤压流体膜问题.研究发现初始滑移长度对低剪切率下的滑移行为起主要作用,而临界剪切率决定了高剪切率下的边界滑移程度.球体表面挤压流体膜的边界滑移量是与半径坐标相关的高度非线性函数.在挤压膜的中心点和远离中心点处由于低剪切率滑移量等于初始滑移长度,然而在高剪切率区域滑移长度迅速增加.球体挤压膜的流体动压力随着初始滑移长度的增加和临界剪切率的减小而减小,并且临界剪切率对流体动力的影响要比初始滑移长度大的多,当临界剪切率很小的情况下,流体动压随着最小膜厚的减小几乎不再增加.所用模型给出的理论预报和实验非常吻合.  相似文献   

8.
The nonlinear dynamic behavior of a rotor-bearing system is analyzed based on a continuum model. The finite element method is adopted in the analysis. Emphasis is placed on the so-called “oil-whip phenomena” which might lead to the failure of the rotor system. The dynamic response of the system in unbalanced conditions is approached by a direct integration method. It is found that a typical “oil-whip phenomenon” is successfully simulated, and the effect of the refinement of the finite element mesh is also checked. Furthermore, the bifurcation behavior of the oil-whip phenomenon that is of much concern in recent nonlinear dynamics research is analyzed. The rotor-bearing system is also examined by a simple discrete model. Significant differences are found between these two models. It is suggested that a careful examination should be made in modeling the nonlinear dynamic behavior of a rotor system.  相似文献   

9.
This paper aims to investigate the coupling influences of thermal loading and surface effects on pull-in instability of electrically actuated circular nanoplate based on Eringen's nonlocal elasticity theory, where the electrostatic force and thermally corrected Casimir force are considered. By utilizing the Kirchhoff plate theory, the nonlinear equilibrium equation of axisymmetric circular nanoplate with variable coefficients and clamped boundary conditions is derived and analytically solved. The results describe the influences of surface effect and thermal loading on pull-in displacements and pull-in voltages of nanoplate under thermal corrected Casimir force. It is seen that the surface effect becomes significant at the pull-in state with the decrease of nanoplate thicknesses, and the residual surface tension exerts a greater influence on the pull-in behavior compared to the surface elastic modulus. In addition, it is found that temperature change plays a great role in the pull-in phenomenon; when the temperature change grows, the circular nanoplate without applied voltage is also led to collapse.  相似文献   

10.
This paper adopts some alternative strategies to design a nonlinear controller for double electrostatically actuated microplates. The novel design is carried out to solve the singularity problem reported in many articles due to the use of the Taylor expansion to simplify the electrostatic force. The nonlinear governing partial differential equation is converted to the modal equation using the Galerkin method. Then, based on the Lyapunov stability criterion, a fuzzy backstepping controller facilitated by prescribed performance functions is applied to the non-affine system to extend the travel range beyond the pull-in region and capture the structural and nonstructural uncertainties that exist in the practical systems. The present work also aims to bring satisfactory transient and steady-state performance indices to the system. Moreover, unknown time-varying delays as the indispensable part of practical systems are considered in the proposed control scheme to suppress the delays occurring in the measurement of the states by constructing Lyapunov–Krasovskii function. The accuracy of the modal equation in both the static and dynamic analysis is verified through a meshless method as a direct solution of the partial differential equation. The proposed controller guarantees that all the closed-loop signals are semi-globally, uniformly ultimately bounded, and the error evolves within the decaying prescribed bounds. Finally, the proposed controller demonstrates its feasibility to extend the travel range within and beyond the pull-in range despite the unknown uncertainties and time-varying delays which exist in the system.  相似文献   

11.
Nonlinear pull-in behavior for different electrostatic micro-actuators were simulated in this study. The Adomian decomposition method was employed to overcome the difficulty in the nonlinear equation of motion. Because no iteration is required in solving the nonlinear deformation, the decomposition method is one of the most efficient methods for evaluating the unstable pull-in behavior of an electrostatic micro-actuator. To investigate the feasibility of applying the Adomian decomposition method in dealing with the nonlinear deflection equation in the micro-actuator problem, different types of micro-actuators, e.g., fixed-fixed beam actuator and cantilever beam actuator were studied and analyzed. The calculated results agreed well with those from the literature.  相似文献   

12.
13.
阻尼复合结构的抑振性能取决于材料布局和阻尼材料特性.该文提出了一种变体积约束的阻尼材料微结构拓扑优化方法,旨在以最小的材料用量获得具有期望性能的阻尼材料微结构.基于均匀化方法,建立阻尼材料三维微结构有限元模型,得到阻尼材料的等效弹性矩阵.逆用Hashin-Shtrikman界限理论,估计对应于期望等效模量的阻尼材料体积分数限,并构建阻尼材料体积约束限的移动准则.将获得阻尼材料微结构期望性能的优化问题转化为体积约束下最大化等效模量的优化问题,建立阻尼材料微结构的拓扑优化模型.利用优化准则法更新设计变量,实现最小材料用量下的阻尼材料微结构最优拓扑设计.通过典型数值算例验证了该方法的可行性和有效性,并讨论了初始微构型、网格依赖性和弹性模量等对阻尼材料微结构的影响.  相似文献   

14.
An analytical approach is presented for the accurate definition of lower and upper bounds for the pull-in voltage and tip displacement of a micro- or nanocantilever beam subject to compressive axial load, electrostatic actuation and intermolecular surface forces. The problem is formulated as a nonlinear two-point boundary value problem and has been transformed into an equivalent nonlinear integral equation. Initially, new analytical estimates are found for the beam deflection, which are then employed for assessing novel and accurate bounds from both sides for the pull-in parameters, taking into account for the effects of the compressive axial load. The analytical predictions are found to closely agree with the numerical results provided by the shooting method. The effects of surface elasticity and residual stresses, which are of significant importance when the physical dimensions of structures descend to nanosize, are also included in the proposed approach.  相似文献   

15.
基于机械化数学-吴文俊消去法,分别采用短轴承油膜力模型和Muszynska转子力学模型,对转子轴承系统中的动力学行为与稳定性进行了分析研究.具体分析时,采用吴文俊特征列概念和基于Maple软件的符号计算平台,对短轴承涡动参数进行了解析分析,以及试算构造出了Liapunov函数,并给出了转子系统运动稳定性条件.  相似文献   

16.
A variety of micro-scale experiments have demonstrated that the mechanical property of some metals and polymers on the order of micron scale are size dependence. Taking into account the size effect on the mechanical property of materials and the inherent nonlinear property of electrostatic force, the static pull-in behavior of an electrostatically actuated Bernoulli–Euler microbeam is analyzed on the basis of a modified couple stress theory. The approximate analytical solutions to the pull-in voltage and pull-in displacement of the microbeam are derived by using the Rayleigh–Ritz method. The results show that the normalized pull-in voltage of the microbeam increases by a factor of 3.1 as the microbeam thickness equals to the material length scale parameter and exhibits size effect remarkably. However, the size effect on the pull-in voltage is almost diminishing as the microbeam thickness is far greater than the material length scale parameter. The normalized pull-in displacement of the microbeam exhibits size independence and equals to 0.448 and 0.398 for the cantilever beam and clamped–clamped beam, respectively.  相似文献   

17.
A nonclassical nonlinear continuum model of electrically actuated viscoelastic microbeams is presented based on the modified couple stress theory to consider the microstructure effect in the framework of viscoelasticity. The nonlinear integral-differential governing equation and related boundary conditions of are derived based on the extended Hamilton's principle and Euler–Bernoulli hypothesis for viscoelastic microbeams with clamped-free, clamped-clamped, simply-supported boundary conditions. The proposed model accounts for system nonlinearities including the axial residual stress, geometric nonlinearity due to midplane stretching, electrical forcing with fringing effect. The behavior of the microbeam is simulated using generalized Maxwell viscoelastic model. A new generalized differential/integral quadrature method is developed to solve the resulting governing equation. The developed model is verified against elastic behavior and a favorable agreement is obtained. Efficiency of the developed model is demonstrated by analyzing the quasistatic pull-in phenomena of electrically actuated viscoelastic microbeams with different boundaries at various material length scale parameters and axial residual stresses in the framework of linear viscoelasticity.  相似文献   

18.
针对磁场环境中具有线载荷和弹性支承作用的面内运动薄板,给出了系统的势能、动能及电磁力表达式,应用Hamilton变分原理,推得面内运动条形板的磁固耦合非线性振动方程.考虑边界为夹支-铰支的约束条件,利用变量分离法和Galerkin积分法,得到了含简谐线载力和电磁阻尼力项的两自由度非线性振动微分方程组.应用多尺度法对主-...  相似文献   

19.
液固耦合系统中液体的有限幅晃动力及晃动力矩   总被引:3,自引:0,他引:3  
研究弹簧-质量系统与圆柱贮箱类液体有限幅晃动系统间的非线性耦合动力学问题。在建立了六自由度非线性耦合动力学模型的基础上,导出了液体有限幅晃动力和力矩解析表达式。指出在终了构形上积分及压力表达式中的非线性项是有限幅晃动作用力、作用力矩非线性的根源。x、y方向结果之间良好的对称性在很大程度上证明了结果的正确性。通过耦合机理分析可知,这样的理论结果应具有较大的普适性。数值仿真结果与有关实验结果进行了对比。分析认为,在终了构形上求晃动力、晃动力矩较为合理。舍去的高维模态基底及高阶非线性项以及液体晃动阻尼的复杂性是导致偏差的重要原因。  相似文献   

20.
A semianalytical approach to nonlinear fluid film forces of a hydrodynamic journal bearing with two axial grooves under the cavitation boundary condition is proposed. The pressure distribution of the Reynolds equation of a finitely long journal bearing with axial grooves is expressed as a particular solution and a homogeneous solution. The particular solution and the homogeneous solution are separated, respectively, into an additive form and a multiplicative form by the method of separation of variables. The circumferential separable function of the homogeneous solution can be expanded on the basis of the infinite series of trigonometric functions. The pressure distribution of the particular solution is obtained by the Sommerfeld transformation. The termination positions of the fluid film are determined by the continuity condition. The analytical expressions for the nonlinear fluid film forces of a finitely long journal bearing with two axial grooves are obtained. The fluid film forces calculated by the proposed method agree well with the results obtained by the finite-difference method. The effects of the bearing parameters on the nonlinear fluid film forces are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号