首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsteady mixed convection boundary layer flow near the stagnation point on a heated vertical plate embedded in a fluid saturated porous medium is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase in the surface temperature. Both the buoyancy assisting and the buoyancy opposing flow situations are considered with combined effects of the first and second order resistance of solid matrix of non-Darcy porous medium, variable viscosity and radiation. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. The features of the flow and the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The surface shear stress and the heat transfer of the present study are compared with the available results and a good agreement is found.  相似文献   

2.
The effect of chemical reaction and variable viscosity on hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media has been studied in the presence of radiation and magnetic field. The plate surface is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or blowing and has a power-law variation of both the wall temperature and concentration. The similarity solution is used to transform the system of partial differential equations, describing the problem under consideration, into a boundary value problem of coupled ordinary differential equations, and an efficient numerical technique is implemented to solve the reduced system. Numerical calculations are carried out, for various values of the dimensionless parameters of the problem, which include a variable viscosity, chemical reactions, radiation, magnetic field, porous medium and power index of the wall temperature parameters. Comparisons with previously published works are performed and excellent agreement between the results is obtained. The results are presented graphically and the conclusion is drawn that the flow field and other quantities of physical interest are significantly influenced by these parameters.  相似文献   

3.
The steady laminar magnetohydrodynamic (MHD) boundary-layer flow past a wedge with constant surface heat flux immersed in an incompressible micropolar fluid in the presence of a variable magnetic field is investigated in this paper. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by means of an implicit finite-difference scheme known as the Keller-box method. Numerical results show that micropolar fluids display drag reduction and consequently reduce the heat transfer rate at the surface, compared to the Newtonian fluids. The opposite trends are observed for the effects of the magnetic field on the fluid flow and heat transfer characteristics.  相似文献   

4.
In this paper, the mathematical model of free convection boundary layer flow on a solid sphere with Newtonian heating, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations are solved numerically using an efficient numerical scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature, the local skin friction coefficient, as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for different values of the Prandtl number Pr and conjugate parameter γ are analyzed and discussed.  相似文献   

5.
This paper considers the effects of radiation on the flow near the two-dimensional stagnation point of a stretching sheet immersed in a viscous and incompressible electrically conducting fluid in the presence of an applied constant magnetic field. The external velocity and the stretching velocity of the sheet are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by the Keller-box method. The features of the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The results indicate that the heat transfer rate at the surface decreases in the presence of radiation.  相似文献   

6.
This paper considers the effects of radiation on the flow near the two-dimensional stagnation point of a stretching sheet immersed in a viscous and incompressible electrically conducting fluid in the presence of an applied constant magnetic field. The external velocity and the stretching velocity of the sheet are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by the Keller-box method. The features of the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The results indicate that the heat transfer rate at the surface decreases in the presence of radiation.  相似文献   

7.
Natural convection boundary layer laminar flow from a horizontal circular cylinder with uniform heat flux in presence of heat generation has been investigated. The governing boundary layer equations are transformed into a non-dimensional form and the resulting non-linear systems of partial differential equations, which are solved numerically by two distinct methods namely: (i) implicit finite difference method together with the Keller-box scheme and (ii) perturbation solution technique. The results of the surface shear stress in terms of local skin-friction and the rate of heat transfer in terms of local Nusselt number, velocity distribution, velocity vectors, temperature distribution as well as streamlines, isotherms and isolines of pressure are shown by graphically for a selection of parameter set consisting of heat generation parameter.  相似文献   

8.
The present paper presents a numerical solution of flow and heat transfer outside a stretching permeable cylinder. The governing system of partial differential equations is converted to ordinary differential equations by using similarity transformations, which are then solved numerically using the Keller-box method. The main purpose of the present study is to investigate the effects of the governing parameters, namely the suction/injection parameter, Prandtl number, and Reynolds number on the velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number. The results are shown graphically. The values of the skin friction coefficient and the Nusselt number are presented in tables.  相似文献   

9.
We establish existence and uniqueness results for a general class of coupled nonlinear third order differential equations arising in flow and heat transfer problems. We consider solutions over the semi-infinite interval. As special cases, we recover the existence and uniqueness results of solutions for the following physically meaningful scenarios (among others): (i) flow and heat transfer over a stretching sheet, (ii) flow and heat transfer over a nonlinearly stretching porous sheet, (iii) linear convective flow and heat transfer over a porous nonlinearly stretching sheet and (iv) nonlinear convective heat transfer over a porous nonlinearly stretching sheet. In all the cases the effects of viscous dissipation and the internal heat generation/absorption on the flow and heat transfer characteristics are included. Moreover, the obtained results are applicable to several problems dealing with flow and heat transfer phenomena.  相似文献   

10.
The analysis of convective flow and heat transfer of a viscous heat generating fluid past a uniformly moving, infinite, vertical, porous plate has been made systematically with a view to throw adequate light on the effects of the plate-motion and the presence of heat generation/absorption on the flow and heat transfer characteristics. The equations of conservation of momentum and energy which govern the flow and heat transfer of the said problem have been solved numerically by the method of Runge-Kutta-Gill. The numerical results thus obtained for the flow and heat transfer characteristics have revealed many an interesting behaviour, of the skin friction and the rate of heat transfer coefficient at the plate.  相似文献   

11.
This paper analyzes the flow and heat and mass transfer characteristics of the free convection on a vertical plate with variable wall temperature and concentration in a doubly stratified micropolar fluid. A uniform magnetic field is applied normal to the plate. The governing non-linear partial differential equations are transformed into a system of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The non-dimensional velocity, microrotation, temperature and concentration are presented graphically for various values of magnetic parameter, coupling number, thermal and solutal stratification parameters. In addition, the Nusselt number, the Sherwood number, the skin-friction coefficient, and the wall couple stress are shown in a tabular form.  相似文献   

12.
This paper concerns mathematical and numerical modeling of thermal phenomena accompanying single laser and laser-arc hybrid butt welding of steel sheets. Coupled heat transfer and fluid flow in the fusion zone were described respectively by transient heat transfer equation and Navier–Stokes equation. Laser beam and electric arc heat sources were modeled using different heat source power distributions. Latent heat associated with the material’s state changes, buoyancy forces and liquid material flow through a porous medium were taken into account in considerations. Differential governing equations were numerically solved using projection method combined with finite volume method. Elaborated solution algorithm was implemented into computer solver used for simulation of heat transfer and fluid flow during welding. The geometry of the weld and heat affected zone as well as cooling rates were estimated on the basis of numerically obtained temperature field.  相似文献   

13.
The plane stagnation flow onto (Hiemenz boundary layer, HBL) and the asymptotic suction boundary layer flow over a flat wall (ASBL) are two boundary layer flows for which the incompressible Navier-Stokes equations are amenable to exact similarity solutions. The Hiemenz solution has been extended to swept Hiemenz flows by superposition of a third, spanwise-homogeneous sweep velocity. This solution becomes singular as the chordwise, tangential base flow component vanishes. In this limit, the homogeneous ASBL solution is valid, which however cannot describe the swept Hiemenz flow, because it does not contain any chordwise velocity. This work presents a generalized three-dimensional similarity solution which describes three-dimensional spanwise homogeneously impinging boundary layers at arbitrary wall-normal suction velocities, using a rescaled similarity coordinate. The HBL and the ASBL are shown to be two limits of this solution. Further extensions consist of oblique impingement or different boundary suction directions, such as slip or stretching walls. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This paper describes in detail a novel formulation of the method of characteristics for its application to solve one-dimensional compressible unsteady non-homentropic flow advected along porous wall channels. In particular, the method is implemented into a wall-flow monolith Diesel particulate filter model whose purpose is the pressure drop prediction. The flow inside the monolith channels is considered to be one-dimensional and the flow through the porous wall treated as a source term agree with the Darcy’s law. The flow dynamic behaviour at internal nodes of the channels is solved by means of shock capturing methods, whereas the end nodes, or boundary conditions, are solved applying the method of characteristics. The derived solution in this study of the Riemann variables and the entropy level includes the variation along the space–time plane due to cross-section area changes, friction and heat transfer as traditionally stated, but also takes into account the key influence on every line of the flow leaving or entering to the channels through the porous walls.  相似文献   

15.
In this article, a powerful analytical method, called the Homotopy Analysis Method (HAM) is introduced to obtain the exact solutions of heat transfer equation of a non-Newtonian fluid flow in an axisymmetric channel with a porous wall for turbine cooling applications. The HAM is employed to obtain the expressions for velocity and temperature fields. Tables are presented for various parameters on the velocity and temperature fields. These results are compared with the solutions which are obtained by Numerical Methods (NM). Also the convergence of the obtained HAM solution is discussed explicitly. These comparisons show that this analytical method is strongly powerful to solve nonlinear problems arising in heat transfer.  相似文献   

16.
Lie group method is investigated for solving the problem of heat transfer in an unsteady, three-dimensional, laminar, boundary-layer flow of a viscous, incompressible and electrically conducting fluid over inclined permeable surface embedded in porous medium in the presence of a uniform magnetic field and heat generation/absorption effects. A uniform magnetic field is applied in the y-direction and a generalized flow model is presented to include the effects of the macroscopic viscous term and the microscopic permeability of porous medium. The infinitesimal generators accepted by the equations are calculated and the extension of the Lie algebra for the problem is also presented. The restrictions imposed by the boundary conditions on the generators are calculated. The investigation of the three-independent-variable partial differential equations is converted into a two-independent-variable system by using one subgroup of the general group. The resulting equations are solved numerically with the perturbation solution for various times. Velocity, temperature and pressure profiles, surface shear stresses, and wall-heat transfer rate are discussed for various values of Prandtl number, Hartmann number, Darcy number, heat generation/absorption coefficient, and surface mass-transfer coefficient.  相似文献   

17.
An analysis is carried out to study the flow, chemical reaction and mass transfer of a steady laminar boundary layer of an electrically conducting and heat generating fluid driven by a continuously moving porous surface embedded in a non-Darcian porous medium in the presence of a transfer magnetic field. The governing partial differential equations are converted into ordinary differential equations by similarity transformation and are solved numerically by using the finite element method. The results obtained are presented graphically for velocity, temperature and concentration profiles, as well as the Sherwood number for various parameters entering into the problem.  相似文献   

18.
The problem of free convection heat with mass transfer for MHD non-Newtonian Eyring–Powell flow through a porous medium, over an infinite vertical plate is studied. Taking into account the effects of both viscous dissipation and heat source. The temperature and concentration are of periodic variation. The governing non-linear partial differential equations of this phenomenon are transformed into non-linear algebraic system utilizing finite difference method. Numerical results for the velocity, temperature and concentration distributions as well as the skin friction, heat and mass transfer are obtained and reported in tabular form and graphically for different values of physical parameters of the problem. Also, the stability condition is studied.  相似文献   

19.
The effect of heat and mass transfer on free convective flow of a visco-elastic incompressible electrically conducting fluid past a vertical porous plate through a porous medium with time dependant oscillatory permeability and suction in the presence of a uniform transverse magnetic field, heat source and chemical reaction has been studied in this paper. The novelty of the present study is to analyze the effect of chemical reaction, time dependant fluctuative suction and permeability of the medium on a visco-elastic fluid flow. It is interesting to note that presence of sink contributes to oscillatory motion leading to flow instability. Further it is remarked that presence of heat source and low rate of thermal diffusion counteract each other in the presence of reacting species.  相似文献   

20.
In this paper, a powerful analytical method, called homotopy analysis method (HAM) is used to obtain the analytical solution for a nonlinear ordinary deferential equation that often appear in boundary layers problems arising in heat and mass transfer which these kinds of the equations contain infinity boundary condition. The boundary layer approximations of fluid flow and heat transfer of vertical full cone embedded in porous media give us the similarity solution for full cone subjected to surface heat flux boundary conditions. Nonlinear ODE which is obtained by similarity solution has been solved through homotopy analysis method (HAM). The main objective is to propose alternative methods of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. The obtained analytical solution in comparison with the numerical ones represents a remarkable accuracy. The results also indicate that HAM can provide us with a convenient way to control and adjust the convergence region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号