共查询到20条相似文献,搜索用时 15 毫秒
1.
Qi Wang 《Applied mathematics and computation》2010,217(8):4122-4128
In this paper, the homotopy analysis method is successfully applied to solve approximate solutions of the differential-difference system. The solution of another relativistic Toda lattice system is considered. Comparisons made between the results of the proposed method and exact solutions reveal that the homotopy analysis method is very effective in solving differential-difference system. 相似文献
2.
In this paper, the homotopy analysis method (HAM) has been employed to obtain analytical solution of a two reaction–diffusion systems of fractional order (fractional Schnakenberg systems) which has been modeling morphogen systems in developmental biology. Different from all other analytic methods, HAM provides us with a simple way to adjust and control the convergence region of solution series by choosing proper values for auxiliary parameter h. The fractional derivative is described in the Caputo sense. The reason of using fractional order differential equations (FOD) is that FOD are naturally related to systems with memory which exists in most biological systems. Also they are closely related to fractals which are abundant in biological systems. The results derived of the fractional system are of a more general nature. Respectively, solutions of FOD spread at a faster rate than the classical differential equations, and may exhibit asymmetry. However, the fundamental solutions of these equations still exhibit useful scaling properties that make them attractive for applications. 相似文献
3.
This paper introduces a discrete homotopy analysis method (DHAM) to obtain approximate solutions of linear or nonlinear partial differential equations (PDEs). The DHAM can take the many advantages of the continuous homotopy analysis method. The proposed DHAM also contains the auxiliary parameter ?, which provides a simple way to adjust and control the convergence region of solution series. The convergence of the DHAM is proved under some reasonable hypotheses, which provide the theoretical basis of the DHAM for solving nonlinear problems. Several examples, including a simple diffusion equation and two-dimensional Burgers’ equations, are given to investigate the features of the DHAM. The numerical results obtained by this method have been compared with the exact solutions. It is shown that they are in good agreement with each other. 相似文献
4.
We present here a ‘similar’ solution for the nano boundary layer with nonlinear Navier boundary condition. Three types of flows are considered: (i) the flow past a wedge; (ii) the flow in a convergent channel; (iii) the flow driven by an exponentially-varying outer flows. The resulting differential equations are solved by the homotopy analysis method. Different from the perturbation methods, the present method is independent of small physical parameters so that it is applicable for not only weak but also strong nonlinear flow phenomena. Numerical results are compared with the available exact results to demonstrate the validity of the present solution. The effects of the slip length ?, the index parameters n and m on the velocity profile and the tangential stress are investigated and discussed. 相似文献
5.
Joseph W. Jerome 《Constructive Approximation》1985,1(1):271-285
A quadratically convergent algorithm based on a Newton-type iteration is defined to approximate roots of operator equations in Banach spaces. Fréchet derivative operator invertibility is not required; approximate right inverses are used in a neighborhood of the root. This result, which requires an initially small residual, is sufficiently robust to yield existence; it may be viewed as a generalized version of the Kantorovich theorem. A second algorithm, based on continuation via single, Euler-predictor-Newton-corrector iterates, is also presented. It has the merit of controlling the residual until the homotopy terminates, at which point the first algorithm applies. This method is capable of yielding existence of a solution curve as well. An application is given for operators described by compact perturbations of the identity. 相似文献
6.
Robert A. Van Gorder 《Numerical Algorithms》2017,76(1):151-162
In recent work on the area of approximation methods for the solution of nonlinear differential equations, it has been suggested that the so-called generalized Taylor series approach is equivalent to the homotopy analysis method (HAM). In the present paper, we demonstrate that such a view is only valid in very special cases, and in general, the HAM is far more robust. In particular, the equivalence is only valid when the solution is represented as a power series in the independent variable. As has been shown many times, alternative basis functions can greatly improve the error properties of homotopy solutions, and when the base functions are not polynomials or power functions, we no longer have that the generalized Taylor series approach is equivalent to the HAM. In particular, the HAM can be used to obtain solutions which are global (defined on the whole domain) rather than local (defined on some restriction of the domain). The HAM can also be used to obtain non-analytic solutions, which by their nature can not be expressed through the generalized Taylor series approach. We demonstrate these properties of the HAM by consideration of an example where the generalizes Taylor series must always have a finite radius of convergence (and hence limited applicability), while the homotopy solution is valid over the entire infinite domain. We then give a second example for which the exact solution is not analytic, and hence, it will not agree with the generalized Taylor series over the domain. Doing so, we show that the generalized Taylor series approach is not as robust as the HAM, and hence, the HAM is more general. Such results have important implications for how iterative solutions are calculated when approximating solutions to nonlinear differential equations. 相似文献
7.
A.K. Alomari M.S.M. Noorani R. Nazar 《Communications in Nonlinear Science & Numerical Simulation》2009,14(4):1196-1207
In this paper, by means of the homotopy analysis method (HAM), the solutions of some Schrodinger equations are exactly obtained in the form of convergent Taylor series. The HAM contains the auxiliary parameter ?, that provides a convenient way of controlling the convergent region of series solutions. This analytical method is employed to solve linear and nonlinear examples to obtain the exact solutions. HAM is a powerful and easy-to-use analytic tool for nonlinear problems. 相似文献
8.
《Communications in Nonlinear Science & Numerical Simulation》2007,12(5):714-724
In this article, the self-similar wall jet over an impermeable, resting plane surface (the Glauert-jet) is considered. Through an analytic technique to solve nonlinear problems namely the homotopy analysis method, we obtain an explicit series solution for the Glauert-jet problem. This series solution converges efficiently to the closed-form solution found by Glauert in the whole region 0 ⩽ ξ < +∞. In the frame of the homotopy analysis method, it is shown that the convergence region of the explicit series solution may be adjusted to obtain more accurate results. 相似文献
9.
Based on the modified homotopy perturbation method (MHPM), exact solutions of certain partial differential equations are constructed by separation of variables and choosing the finite terms of a series in p as exact solutions. Under suitable initial conditions, the PDE is transformed into an ODE. Some illustrative examples reveal the effciency of the proposed method. 相似文献
10.
二维色散长波方程组的精确解 总被引:2,自引:0,他引:2
利用齐次平衡法给出了二维色散长波方程组的定态解、孤立波解与非孤立波解等几种显式精确解。这个方法也可用来寻找其它非线性发展方程的不同类型的精确解。 相似文献
11.
In this work, we implement a relatively new analytical technique, the Exp-Function method, for solving special form of generalized nonlinear Benjamin–Bona–Mahony–Burgers equation (BBMB) which may contain high nonlinear terms. 相似文献
12.
We introduce a second auxiliary parameter into the zero-order deformation equation and propose a generalization of the homotopy analysis method. This includes the derivation of a general solution in terms of the Bell polynomials for nonlinear equations. Numerical examples show that the proposed zero-order deformation equation improves the convergence region and rate of the series solution and allows greater freedom in the selection of auxiliary operators. This facilitates the development of a homotopy iteration scheme for nonlinear equations with discontinuous or zero derivatives that are not amenable to Newton-type iteration schemes. The homotopy iteration scheme represents a generalization of conventional iteration schemes and additional examples demonstrate its applicability for a wider range of nonlinear problems. 相似文献
13.
Shijun Liao 《Nonlinear Analysis: Real World Applications》2009,10(4):2455-2470
A general analytic approach for nonlinear eigenvalue problems is described. Two physical problems are used as examples to show the validity of this approach for eigenvalue problems with either periodic or non-periodic eigenfunctions. Unlike perturbation techniques, this approach is independent of any small physical parameters. Besides, different from all other analytic techniques, it provides a simple way to ensure the convergence of series of eigenvalues and eigenfunctions so that one can always get accurate enough approximations. Finally, unlike all other analytic techniques, this approach provides great freedom to choose an auxiliary linear operator so as to approximate the eigenfunction more effectively by means of better base functions. This approach provides us a new way to investigate eigenvalue problems with strong nonlinearity. 相似文献
14.
15.
In this paper, an analytic approximation method for highly nonlinear equations, namely the homotopy analysis method (HAM), is employed to solve some backward stochastic differential equations (BSDEs) and forward-backward stochastic differential equations (FBSDEs), including one with high dimensionality (up to 12 dimensions). By means of the HAM, convergent series solutions can be quickly obtained with high accuracy for a FBSDE in a 6-dimensional case, within less than 1 % CPU time used by a currently reported numerical method for the same case [34]. Especially, as dimensionality enlarges, the increase of computational complexity for the HAM is not as dramatic as this numerical method. All of these demonstrate the validity and high efficiency of the HAM for the backward/forward-backward stochastic differential equations in science, engineering, and finance. 相似文献
16.
Optimal homotopy analysis method is a powerful tool for nonlinear differential equations. In this method, the convergence of the series solutions is controlled by one or more parameters which can be determined by minimizing a certain function. There are several approaches to determine the optimal values of these parameters, which can be divided into two categories, i.e. global optimization approach and step-by-step optimization approach. In the global optimization approach, all the parameters are optimized simultaneously at the last order of approximation. However, this process leads to a system of coupled, nonlinear algebraic equations in multiple variables which are very difficult to solve. In the step-by-step approach, the optimal values of these parameters are determined sequentially, that is, they are determined one by one at different orders of approximation. In this way, the computational efficiency is significantly improved, especially when high order of approximation is needed. In this paper, we provide extensive examples arising in similarity and non-similarity boundary layer theory to investigate the performance of these approaches. The results reveal that with the step-by-step approach, convergent solutions of high order of approximation can be obtained within much less CPU time, compared with the global approach and the traditional HAM. 相似文献
17.
Muhammad Aslam Noor Syed Tauseef Mohyud-Din Asif Waheed 《Applied mathematics and computation》2010,216(2):477-483
In this paper, we apply the exp-function method to construct generalized solitary and periodic solutions of nonlinear evolution equations. The proposed technique is tested on the modified Zakharov-Kuznetsov (ZK) and Zakharov-Kuznetsov-Modified-Equal-Width (ZK-MEW) equations. These equations play a very important role in mathematical physics and engineering sciences. The suggested algorithm is quite efficient and is practically well suited for use in these problems. Numerical results clearly indicate the reliability and efficiency of the proposed exp-function method. 相似文献
18.
In this paper, we extend the homotopy perturbation method to solve the Davey-Stewartson equations. The homotopy perturbation
method is employed to compute an approximation to the solution of the equations. Computation the absolute errors between the
exact solutions of the Davey-Stewartson equations and the HPM solutions are presented. Some plots are given to show the simplicity
the method.
The article is published in the original. 相似文献
19.
The modified regularized long wave (MRLW) equation is solved numerically by Adomian decomposition method (ADM) with some initial conditions. The method leads to high accurate and efficient results. Three polynomial invariant conditions are evaluated to determine the conservation properties of the problem. The convergence of Adomian decomposition method applied to the MRLW equation is proved. Moreover, the interaction of solitons and the development of the Maxwellian initial condition into solitary waves are considered. 相似文献
20.
We prove the existence of periodic solutions of the nonlinear wave equation satisfying either Dirichlet or periodic boundary conditions on the interval [O, π]. The coefficients of the eigenfunction expansion of this equation satisfy a nonlinear functional equation. Using a version of Newton's method, we show that this equation has solutions provided the nonlinearity g(x, u) satisfies certain generic conditions of nonresonance and genuine nonlinearity. © 1993 John Wiley & Sons, Inc. 相似文献