首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ga2O3 nanobelts were synthesized by gas reaction at high temperature in the presence of oxygen in ammonia. X-ray diffraction and chemical microanalysis revealed that the nanostructures were Ga2O3 with the monoclinic structure. Electron microscopy study indicated the nanobelts were single crystalline with broad (0 1 0) crystallographic planes. The nanostructures grew anisotropically with the growth direction of . Statistical analysis of the anisotropic morphology of the nanobelts and electron microscopy investigation of the nanobelt tips indicated that both vapor–solid and vapor–liquid–solid mechanisms controlled the growth process. The anisotropic nature of crystallographic morphology is explained in terms of surface energy.  相似文献   

2.
This article reports on the growth of single crystal Sn3O4 nanobelts and SnO by a carbothermal reduction process in two different regions of a furnace tube. Even though intermediate tin oxide compounds (Sn3O4) have been observed experimentally, the study of structures based on them is a challenging task. Characterization data allowed us to propose that Sn3O4 nanobelts grew by vapor–solid mechanism while SnO grew by self-catalyst vapor–liquid–solid mechanism. Electrical measurements of a single Sn3O4 nanobelt were performed at different temperatures, revealing undoped semiconductor characteristics.  相似文献   

3.
Thermogravimetric analysis (TGA) and microstructural observations were carried to investigate the nitridation mechanism of β-Ga2O3 powder to GaN under an NH3/Ar atmosphere. Non-isothermal TGA showed that nitridation of β-Ga2O3 starts at ∼650 °C, followed by decomposition of GaN at ∼1100 °C. Isothermal TGA showed that nitridation follows linear kinetics in the temperature range 800–1000 °C. At an early stage of nitridation, small GaN particles (∼5 nm) are deposited on the β-Ga2O3 crystal surface and they increase with time. We proposed a mechanism for the nitridation of Ga2O3 by NH3 whereby nitridation of β-Ga2O3 proceeds via the intermediate vapor species Ga2O(g).  相似文献   

4.
This paper reports on the thermal-induced performance of hexagonal metastable In2O3 nanocrystals involving in phase transition and assembly, with particular emphasis on the assembly for the preparation of functional materials. For In2O3 nanocrystals, the metastable phase was found to be thermally unstable and transform to cubic phase when temperature was higher than 600 °C, accompanied by assembly as well as evolution of optical properties, but the two polymorphs coexisted at the temperature ranging from 600 to 900 °C, during which the content of product phase and crystal size gradually increased upon increasing temperature. The assembly of In2O3 nanocrystals can be developed to fabricate In2O3 functional materials, such as various ceramic materials, or even desired nano- or micro-structures, by using metastable In2O3 nanocrystals as precursors or building blocks. The electrical resistivity of In2O3 conductive film fabricated by a hot-pressing route was as low as 3.72×10−3 Ω cm, close to that of In2O3 single crystal, which is important for In2O3 that is always used as conductive materials. The findings should be of importance for both the wide applications of In2O3 in optical and electronic devices and theoretical investigations on crystal structures.  相似文献   

5.
A solvothermal route has been developed to synthesize K2V3O8 nanorods via the reduction of V2O5 using ethanol as the reducing agent as well as the solvent at 200°C. X-ray diffraction and selected area electron diffraction analysis revealed that the as-synthesized products are of tetragonal structure K2V3O8. Transmission electron spectroscopy image showed that the obtained K2V3O8 comprises rod-like nanocrystallites. The formation mechanism of K2V3O8 was studied.  相似文献   

6.
We study how an oxygen-deficient crystal of TiO2 crystal grows when exposed to O2. While the O flux is external to the crystal, the Ti flux necessary for growth comes from internal (bulk) interstitials (Phys. Rev. Lett. 76 (1996) 791). We address where the reaction between O and Ti to form new crystal takes place in the regime of pure step flow (i.e., surface steps advancing without new-layers nucleating). The detailed partitioning of the growth flux among individual surface steps is studied using low-energy electron microscopy for two geometries on the (110) surface—an array of islands on a terrace and an island stack generated from a dislocation source. For both geometries, the areas of islands larger than the critical size grow at rates strictly proportional to their perimeter length, independent of the local step configuration. In addition, we find that the growth rate is proportional to the O2 pressure. The step flow represents a simple limiting case of crystal growth (Phil. Trans. R. Soc. A. 243 (1951) 299)—only the growth species near a step edge becomes incorporated into the crystal. That is, only Ti and O reactions near the step edge lead to crystal growth. This case is in marked contrast to crystal growth controlled by species attaching to terraces and diffusing to steps, for which the growth rates depend upon the local step environment. Indeed, simulating the island array as if the growth flux was partitioned among the individual islands by concentration gradients (i.e., diffusion-controlled growth) totally failed to reproduce the experimental rates.  相似文献   

7.
Dynamics of crystallization of amorphous antimony-selenium film deposited on carbon substrate have been studied by the high-resolution transmission electron microscopy. The amorphous film was suddenly crystallized at 200°C by heating in vacuum. By the electron beam irradiation crystallization occurred at the focused electron beam region in the amorphous film. The growth process of crystallization by electron beam irradiation was recorded on a video image at the atomic resolution mode. The growth front of crystallization showed nano-concave and -convex shapes. The recrystallization with the different orientation at the first grown crystal have been found, and discussed as the influence of remaining antimony crystallites at the first crystallized film region.  相似文献   

8.
Single crystals of PbMg1/3Ta2/3O3 (PMT) were grown by the flux method. The PbO–Pb3O4–B2O3 system was used as a solvent. Transparent and light yellow PMT single crystals of rectangular shape and dimensions up to 10×6×4 mm3 were obtained. For the applied growth conditions only, the crystals of the perovskite structure were grown. X-ray diffraction tests showed that at room temperature PMT exhibits cubic symmetry with lattice parameter a=4.042(1) Å. Dielectric studies pointed to relaxor properties of PMT. The characteristic broad and frequency-dependent maximum of dielectric permittivity was observed at 179.7 K (1 kHz).  相似文献   

9.
Large-size single crystals of β-Ga2O3 with 1 inc in diameter have been grown by the floating zone technique. The stable growth conditions have been determined by the examination of the crystal structure. Wafers have been cut and fine polished in the (1 0 0), (0 1 0) and (0 0 1) planes. These were highly transparent in the visible and near UV, as well as electrically conductive, indicating the potential use of β-Ga2O3 as a substrate for optoelectic devices operating in the visible/near UV and with vertical current flow.  相似文献   

10.
Phase relations around langasite (LGS, La3Ga5SiO14) were studied on the basis of phase assemblage observed during calcination and crystallization process of samples of various compositions in the ternary system La2O3–Ga2O3–SiO2. A ternary compound of apatite structure, La14GaxSi9–xO39–x/2 was found for the first time. Crystallization of this compound was observed in the cooling process of molten samples of stoichiometric LGS as well as LGS single crystal, demonstrating that LGS is an incongruent-melting compound. A phase diagram was established primarily based on the crystallization sequence in the cooling process.  相似文献   

11.
Si-rich silicon oxide (SiOx, 1<x<2) films were prepared by RF magnetron reactive sputtering or co-sputtering on the Si(1 1 1) substrates. X-ray diffraction patterns showed that the peak of silicon nanocrystals (NCs), separated from SiOx films, had (1 1 1) preferred orientation. The results of scanning electron microscopy indicated the Si NCs uniting into clusters. We demonstrated that the photoluminescence (PL) peaks at 650 nm was caused by defect center. In particular, we discussed the correlation between the PL and the structure of SiOx films. The mean size of the Si NCs was estimated to be about 3 nm by the PL peak position.  相似文献   

12.
The preparation of large bulk oxide eutectics with homogeneous and dense structure in nano-scale by melt growth method is a difficult challenge. Fully dense, homogeneous and crack-free ternary nanostructured Al2O3/YAG/ZrO2 hypereutectic plate with large surface is successfully obtained by laser remelting. The hypereutectic in selected composition presents an ultra-fine eutectic-like microstructure consisting of alternating interpenetrating Al2O3, YAG and ZrO2 lamellae with mean interphase spacing of about 150 nm, which is much smaller than the ternary eutectic composition grown at the same growth conditions. With the increase of laser scanning rate, the lamellar spacing is rapidly decreased. The minimum value obtained is 50 nm. The analysis indicates that the strong faceted growth behavior and cooperative branching of the component phases related with high entropies of fusion and large kinetic undercooling during laser rapid solidification are the primary formation reasons for the irregular eutectic growth morphology. Furthermore, the unique cellular microstructure with complex structure is also observed at high growth rate, and their formation mechanism and effect of the composition on the microstructure are discussed.  相似文献   

13.
Concentrations of nitrogen shallow donors, boron shallow acceptors, charge carriers, and electron traps were measured as a function of position along the growth axis in a series of undoped 6H–SiC boules grown by sublimation method with and without addition of hydrogen to the growth atmosphere. Elemental analysis by secondary ion mass spectrometry and measurements of electrical properties indicate that the addition of hydrogen suppresses nitrogen incorporation and formation of all electron traps. Concentration of boron is not affected by hydrogen presence. The addition of hydrogen to the growth ambient improves the uniformity of nitrogen incorporation and deep trap distribution along the growth axis. The results are interpreted as due to increased carbon transport and corresponding shift of crystal stoichiometry toward carbon-rich side of the SiC existence range.  相似文献   

14.
CuInSe2 (CIS) ingots have been prepared by direct reaction of stoichiometric and non-stoichiometric proportions of high-purity Cu, In and Se. Two approaches, namely the one-ampoule process (quartz crucible) and two-ampoule process (graphite crucible) were investigated to grow the crystals, using starting charges with excess copper, and (nearly stoichiometric and with excess indium), respectively. The effect of deviation from stoichiometry in the charge on the physical properties of the resulting polycrystals is presented. Compositional analysis of the best part of the ingots with starting metals ratio (Cu/In) greater than or equal to 1 showed that the matrix preserved the original character of the charge and evidenced that the CIS chalcopyrite structure, -CIS, tolerates well a large In excess. In contrast, the composition of the crystal prepared with a 10% Cu excess was nearly-stoichiometric, with chemical images revealing the formation of heterogeneous phases besides -CIS. The inclusions precipitation was found to increase toward the ingot base. Interestingly, powder X-ray diffraction measurements revealed the presence of secondary phases rather in all the samples. The corresponding diffraction peaks were however few and very weak, with intensities of less than 3% the maximum value recorded for the CIS (1 1 2) plane.  相似文献   

15.
Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and . A self-catalytic vapor–liquid–solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.  相似文献   

16.
Single crystals of KInO2 were obtained from a reactive potassium hydroxide flux at 700 °C. KInO2 crystallizes in the R-3m crystal system with a=3.2998(10) Å, c=18.322(10) Å and V=172.78(12) Å3. The crystal structure is isotypic with that of α-NaFeO2 and consists of the (1 1 1) layers being occupied alternately by KO6 and InO6 octahedra. Three different AInO2 structure types are discussed.  相似文献   

17.
Dielectric layer containing CoSi2 nanocrystals was directly fabricated by plasma-enhanced atomic layer deposition using CoCp2 and NH3 plasma mixed with SiH4 without annealing process. Synchrotron radiation X-ray diffraction and X-ray photoelectron spectroscopy results confirmed the formation of CoSi2 nanocrystal. The gate stack composed of dielectric layer containing CoSi2 nanocrystals with ALD HfO2 capping layer together with Ru metal gate was analyzed by capacitance–voltage (CV) measurement. Large hysteresis of CV curves indicated charge trap effects of CoSi2 nanocrystals. The current process provides simple route for the fabrication of nanocrystal memory compatible with the current Si device unit processes.  相似文献   

18.
Study of the ZnO crystal growth by vapour transport methods   总被引:5,自引:0,他引:5  
The crystal growth of ZnO by vapour transport is classically made with the assistance of additional species that produce a gaseous mixture, the role of which remains often uncertain in the transport and growth process. Initially, in order to study the mass transport process, a numerical simulation is made to analyse which are the requirements to have an effective transport. As the pressure of each gaseous species is generally unknown, the numerical study has been performed for different total pressures. It is found that, if congruent and equilibrium conditions are assumed at the sublimation and crystallisation interfaces, effective growth conditions can only be attained for a narrow range of total pressures. Nevertheless, it is well known that ZnO growth by vapour transport is possible for a wide range of pressures of gaseous species. As a consequence, partial pressures higher than the equilibrium ones must be present in order to justify the experimental results. We suggest that the thermal decomposition of ZnO is given by an activated process. The analysis of different mechanisms that could justify the activated decomposition, in accord with a systematic set of growth experiments, suggests that some additional species in the growth of ZnO by vapour transport promote the generation of an additional Zn pressure. This zinc pressure would act autocatalytically inducing O2 and Zn partial pressures higher than the equilibrium ones and promoting thermal decomposition. The above-cited set of experimental growth experiences, that include the presence of C, Zn, Fe, Cu and H2, will be analysed and interpreted according to this approach.  相似文献   

19.
The main limitation in the application of hydride vapor phase epitaxy for the large scale production of thick free-standing GaN substrates is the so-called parasitic deposition, which limits the growth time and wafer thickness by blocking the gallium precursor inlet. By utilizing Cl2 instead of the usual HCl gas for the production of the gallium chlorine precursor, we found a rapid increase in growth rate from ∼80 to ∼400 μm/h for an equally large flow of 25 sccm. This allowed us to grow, without any additional optimization, 1.2 mm thick high quality GaN wafers, which spontaneously lifted off from their 0.3° mis-oriented GaN on sapphire HCl-based HVPE templates. These layers exhibited clear transparencies, indicating a high purity, dislocation densities in the order of 106 cm−2, and narrow rocking curve XRD FWHMs of 54 and 166 arcsec in for the 0002 and 101−5 directions, respectively.  相似文献   

20.
In this article, an alternative method for site-specific growth of In2O3 nanorod arrays, which relies on the vapor–liquid–solid growth mechanism, is demonstrated using Cu–Sn (5 at% Sn) alloy as substrate. By annealing Cu–Sn alloy slightly below the solidus line, grain-boundary triple junctions can be wetted preferentially. As a result, the catalyzing Cu droplets will be present at the sites of grain-boundary triple junctions, which will control the growth of In2O3 nanorods at defined locations. This growth technique provides a cost-effective and simple approach to fabricate ordered nanorod arrays with the sites controlled, which may benefit nanorod device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号