首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 640 毫秒
1.
为研究3种柴油燃料装入76 L标准小型货车油箱在明火烤燃下的燃爆特性,利用摄像机、高速照相机、红外热成像仪、热电偶以及电子秤分别记录并测量了油箱的烤燃过程及其产生的喷射火焰表面最高温度、火焰尺寸、油箱内外部温度变化、油料蒸发速率等参数。结果表明:相同烤燃条件下,-10#柴油油箱发生剧烈燃烧和爆炸,防火柴油与阻燃抑爆柴油油箱出现了喷射火焰。防火柴油油箱喷射火焰最高温度、火焰高度、内部蒸气温度和油液温度平均升温速率比-10#柴油分别降低31.39%、75.34%、39.05%和57.32%;阻燃抑爆柴油油箱喷射火焰最高温度、火焰高度、油料质量蒸发速率、内部蒸气温度和油液温度平均升温速率比防火柴油分别降低24.67%、61.11%、14.29%、7.54%和7.54%;阻燃抑爆柴油在抑制火焰温度上升、火球尺寸增长以及降低质量蒸发速率上效果更明显。  相似文献   

2.
为了研究中心点火管火焰在药床中的传播规律,设计了可视化模拟试验平台,开展了不同点火药量、不同装药结构的中心点传火试验。采用高速图像采集系统记录了中心点火管火焰在药床中的传播过程,采用瞬态压力记录仪记录膛内压力的时空变化。结果表明,点火药量为20 g时,出火时间为0.6 ms;点火药量为30 g时,出火时间为1.5 ms;杆状装药床的传火时间平均为2.2 ms,粒状装药床的传火时间平均为3.4 ms,而杆粒混装药床的传火时间为3.1 ms。可见,点火药量对药床出火时间影响显著,较大的点火药量导致药床出火时间延长;不同装药床结构传火性能差异较大,单一杆状装药床传火性能优于单一粒状装药和杆粒混装药床,并且粒状装药床易形成气体壅塞,膛内会出现明显的压力波动现象;根据火焰传播时序位置点,利用一阶指数衰减函数拟合建立了火焰传播过程数学模型,拟合优度大于0.98。  相似文献   

3.
为掌握新型微乳化柴油的抑爆性能和机理,开展了-10#柴油、普通微乳化柴油和新型微乳化柴油抛撒和云雾爆炸实验。采用灰色关联分析法,对柴油样品云雾爆炸火球的表面最高温度时的平均温度、高温(高于1 273.15 K)持续时间、火球最大截面积、火球辐射度等特征参数进行定量计算并评估其爆炸威力,又运用液体燃料抛撒和成像系统,研究柴油样品在激波及其高速气流作用下的抛撒雾化现象及其抑爆机理。结果表明:新型微乳化柴油的抛撒云雾径向扩展半径和云雾爆炸火球特征参数均明显小于-10#柴油、普通微乳化柴油,如在含水质量分数为5%的乳化柴油中分别添加质量分数为0.2%和0.4%的高分子聚合物防雾剂,形成的新型微乳化柴油的火球表面最高平均温度比-10#柴油分别低296.90和336.90 K,高温持续时间比-10#柴油分别少94和234 ms;火球最大截面积也分别只有-10#柴油的60.10%、53.53%;新型微乳化柴油的爆炸威力最小,抑爆性能最好,其次是普通微乳化柴油和-10#柴油;微乳化柴油的水分质量分数在15%以下时,多增加10%的水与添加0.2%防雾剂的抑爆效果相当;新型微乳化柴油抑爆性能较好的主要原因是柴油中添加防雾剂使其液滴黏弹性增大,在高速气流剪切作用不易破碎、雾化,液滴分散效果差。  相似文献   

4.
车辆在遭遇事故或高温天气时容易起火自燃,车辆油箱可能发生爆燃,威胁人员的生命安全。为研究装有油料的油箱在明火烤燃下的燃爆特性,采用摄像机、红外热成像仪和热电偶对油箱在烤燃过程中喷射火焰的表面温度和尺寸以及油箱内部温度进行测试,以76L油箱为研究对象,对比不同密闭条件和填充情况下油箱的燃爆特性。实验结果表明:油箱在出油口关闭、未填充抑爆材料时,易发生爆炸,烤燃产生的爆燃火球表面最高温度在1800K以上,火球体积约为油箱体积的1600多倍;油箱内填充抑爆球可使喷射火焰的最高表面温度和尺寸显著降低;在相同条件下,油箱内柴油蒸气的平均升温速率比汽油蒸气低36.0%,最高温度低16.2%。  相似文献   

5.
为了探讨不同组分的中心装药对不同FAE燃料可能的一次起爆情况,采用物理方法对中心装药的配方进行设计,并对不同的FAE燃料进行了一次起爆实验研究,结果表明含有诱发剂的中心装药可以实现FAE燃料的一次起爆。为了进一步弄清中心装药中诱发剂含量对FAE燃料一次起爆过程的影响,利用不同诱发剂含量的中心装药对自行研制的新型复合燃料进行了一次起爆实验研究,CCD像机现场拍摄记录及压力测试结果表明,中心装药中的诱发剂含量会直接影响FAE燃料抛撒、延迟点火时间、爆炸波超压大小以及爆炸作用效果,诱发剂含量存在一个最优值,中心装药中加入适量诱发剂会增强FAE的一次起爆效果。  相似文献   

6.
在12 m3密闭空间内开展了甲烷-空气预混气体(甲烷体积分数为9.5%)的爆炸试验研究,改变点火位置,分析有泄爆口时点火位置对甲烷-空气爆炸超压和火焰形态的影响。结果表明:点火位置对Δp1的升压速度基本没有影响,Δp2的峰值随着点火位置远离泄爆口而增大,Δp4的峰值与点火位置的关系为:中心点火最大,尾部点火次之,前端点火最小。在所有位置,Δp1随着泄爆阈值的增大而增大,且增量相同;Δp2在前端点火和中心点火时随泄爆阈值的增加而消失,仅在尾部点火时出现;Δp4只有在中心点火时随泄爆阈值的增加而增加。外部火焰发展过程可以分为火球阶段和火焰喷射阶段,尾部点火和中心点火的火球大小及火焰喷射长度远大于前端点火。  相似文献   

7.
温压炸药在坑道内爆炸时会产生多种毁伤元,对坑道内人员和设备造成严重威胁。基于不同药量的温压炸药爆炸试验,对坑道内爆炸条件下温压炸药的爆炸特性开展了研究,分析了爆炸热效应演化特征、冲击波传播规律和氧浓度降低情况,讨论了坑道对铝粉后燃的约束作用规律以及形成高烈度后燃效应的药量条件。研究表明:温压炸药火球辐射亮度高于TNT,且其火球温度峰值超过TNT温度峰值的1.3倍。在火球演化过程中,火球在后燃阶段的温度峰值较火球形态刚稳定时提升超过10%。在冲击波传播规律方面,超压峰值与正压时间的TNT当量系数分别约为1.4与1.65。另外,铝粉后燃产生的压缩波对冲击波能够形成多种补充效果,陡峭升压的压缩波能够使冲击波峰值升高,持续时间长但升压速率慢的压缩波能够限制冲击波的衰减,延长整体正压作用时间。受坑道约束作用,温压炸药爆炸火球将与坑道壁面发生相互作用,进而提高铝粉的燃烧烈度。当温压炸药质量立方根与坑道直径的比值大于0.28 kg1/3/m时,将产生高烈度后燃效应。  相似文献   

8.
构建了长径比为4的含弱约束端面的短管道实验系统,对短管道油气爆炸特性进行了实验研究,得到油气爆炸压力和火焰的变化规律。实验结果表明:(1)受破膜、泄流、外部爆炸等因素的影响,含弱约束端面短管道油气爆炸具有多个超压峰值,并产生Helmholtz振荡;(2)弱约束端面对管道内外爆炸超压均具有增强作用,内部最大超压为24.23 kPa,外部最大超压为5.45 kPa,分别为无约束条件下的4.9和2.7倍;(3)火焰变化过程可划分为“层流燃烧-突变加速-外部爆炸-衰弱熄灭”4个阶段;由于湍流、界面不稳定、斜压效应等因素的影响,火焰在突变加速和外部爆炸两个阶段会发生剧烈的拉伸褶皱和卷曲变形,形成Tulip火焰和蘑菇云状火焰。(4)在层流燃烧阶段,弱约束端面对火焰速度有减弱作用,此阶段最大火焰速度为3.5 m/s,相比于无约束时减弱了41.3%;而在突变加速和外部爆炸阶段,弱约束端面破坏产生的强泄流对火焰传播速度有增强作用,此阶段最大火焰速度为80.2 m/s,相比于无约束时增强了106.2%。(5)不同初始油气浓度条件下火焰发展模式具有显著差异,在低浓度和中浓度条件下火焰能够冲出弱约束端面形成外部火球,而在高浓度条件下,火焰无法冲出管道。  相似文献   

9.
爆炸驱动液体介质外界面的分散和破碎是气溶胶云团形成的重要过程。采用基于维数分裂的欧拉程序和Youngs混合界面处理方法,对中心药爆炸驱动甘油和水介质流场的液体分层现象进行了数值模拟。结合试验结果推断提出了液滴形成过程的三种并存机制:外层射流破碎、内层R-T失稳和中间液层"空化"破碎,分别建立了不同液层破碎液滴的尺寸模拟方法。对比给出抛撒甘油和水装置初级液滴的尺寸分布及最外层理论射流量。  相似文献   

10.
一种测量固体表面温度的单色高温计经改进后,用于火焰动态温度测量,本文设计了三组实验对其可行性进行研究,即:黑火药与铝热剂的分层火焰温度测量实验、单色高温计与热电偶的测温对比实验和激波管内氢氧爆炸火焰动态温度测量实验。结果表明,当目标尺寸远大于单色高温计红外视场时,所测火焰温度可视为单色高温计光轴上的最高温度;采用单色高温计和热电偶同时测量发光火焰的温度,测量结果相差不到6.2%;单色高温计所测氢氧爆炸火焰的动态温度曲线,较好地反映了爆炸火焰的动态传播规律;经改进的单色高温计可以用于爆炸火球等发光火焰的动态温度测量。  相似文献   

11.
通过?30 mm杀爆燃弹外场炮击实验,模拟车辆、装备油箱被炮火击中后二次爆炸场景,采用高速照相机、红外热成像仪分别记录引爆柴油过程和爆炸火球的温度场,对比评估普通柴油、含水型柴油和抑爆型柴油的爆炸特性。实验结果显示:炮弹射击油箱瞬间,柴油液滴被抛撒出油箱,与空气快速混合形成气溶胶,并在炸药能量作用下引发爆炸,形成爆炸火球;不同类型柴油的爆炸火球均经历3个发展阶段,但其尺寸、扩展速率和表面温度等有较大差别,普通柴油和含水型柴油的火球这3个参数比较接近,都大于抑爆型柴油;含水型柴油的油箱毁伤容积为108.00 dm3,远高于普通柴油的57.65 dm3和抑爆型柴油的38.15 dm3。研究表明,抑爆柴油中的高分子聚合物能起到较好的抑爆作用。  相似文献   

12.
为了研究瞬态爆炸温度场分布规律,基于高速相机、黑体辐射理论、图像传感器的拜尔阵列和自编python代码,构建了依据比色测温原理的高速二维温度测试系统,并对添加不同含量TiH2的乳化炸药、TiH2粉尘以及C2H2气体的爆炸温度场进行了测量。实验结果表明:TiH2的加入可以显著提高炸药的爆炸温度和火球持续时间,当乳化炸药中的TiH2质量分数为6%时,爆炸平均温度最大值为3048 K,相比纯乳化炸药提高了41.5%;此外,TiH2粉尘云火焰平均温度呈现先增大,再稳定,最后减小的趋势,浓度为500 g/m3的粉尘云火焰平均温度高于浓度为833 g/m3的平均温度,其最高平均温度分别为2231 和 2192 K;10%C2H2/90%空气预混气体(即体积分数为10%的C2H2和90%空气组成)的早期火焰温度均匀,内部略低于边缘温度,随着火焰膨胀,火焰边缘温度逐渐升高,火焰平均温度开始降低。与传统爆炸测温手段相比,比色测温方法可以准确测量某区域的瞬态爆炸温度,获得温度分布云图,为研究瞬态爆轰温度规律及影响因素提供了一种新的技术手段。  相似文献   

13.
不同舱室结构内航空油料的燃爆参数存在差异,为了解和掌握不同结构舱室内航空油料的燃爆危害性,运用计算流体动力学(computational fluid dynamics,CFD)方法对不同结构航空油料舱室内的航空油料蒸汽燃爆问题进行了数值模拟。结果表明:密闭航空油料舱中的航空油料蒸汽预混燃爆时,油舱各处压力分布较均匀,无隔板密闭舱室和含不完全分割隔板密闭舱室内航空油料的最大燃爆压力分别为0.76、0.74 MPa,即舱室内的不完全分割隔板对航空油料燃爆时所产生的最大压力无显著影响;隔板等特殊结构的存在使舱室内部产生了气流漩涡,增大了燃料消耗的速率,导致火焰面传播速度及压力上升速率增大,舱室内各处燃料的质量分数由火焰面决定。  相似文献   

14.
为研究椭圆截面侵彻弹体的爆炸特性,设计并开展了静爆威力外场试验。将质量为255 kg的弹体竖立于木质托弹架上,质心距地面高度为2 m,采用试验引信起爆弹体装药。通过航拍无人机实时拍摄整个爆炸过程,在长轴和短轴方向布置扇形效应钢板以获取破片数量及穿甲率,采用超压传感器测量距弹轴7、10和12 m处的冲击波超压,并对弹体爆炸后的宏观景象以及火球、破片和冲击波超压特性进行了详细分析。结果表明,火球演化形貌与破片散布区域关于弹体长轴和短轴呈对称分布;火球演化过程分为快速成长阶段、高温稳定阶段以及自由扩散阶段,火球尺寸在爆炸后41.7 ms达到最大,短轴和长轴方向的最大尺寸分别为21.86、19.29 m,且火球在长轴方向发生了明显的二次膨胀;短轴方向的破片尺寸小、数量多、穿甲能力强,而长轴方向的破片特性恰好相反;冲击波超压峰值、冲量及速度均随传播距离增大而不断减小。综合试验结果对比分析,认为椭圆截面侵彻弹体的非轴对称结构和非均匀壁厚对爆炸特性影响较大,是造成火球形貌及破片非轴对称分布的根本原因。  相似文献   

15.
为了研究活性材料爆炸驱动反应特性,基于粉末压制成型工艺,制备了Al/PTFE、Al/Ni两种典型的活性材料及Al2O3/PTFE、Al2O3/PTFE/W惰性材料。通过爆炸驱动试验,并结合高速摄影、远红外热像仪以及峰值超压测试技术,分析了不同活性材料壳体装药爆炸火球、温度场分布及空气冲击波峰值超压等特性。同时,在炸药爆炸空气冲击波峰值超压经验计算模型中考虑了活性材料释放的化学能,分析了反应释放能量对空气冲击波的影响规律。结果表明:活性材料在爆炸驱动过程中经历了强加载条件下反应、产生碎片并向四周飞散、撞击钢板及后续反应等阶段。活性材料对炸药爆炸产生的空气冲击波具有强化作用,爆炸加载瞬间材料仅发生了部分化学反应。  相似文献   

16.
温压炸药爆炸抛撒的运动规律   总被引:2,自引:0,他引:2  
采用高速运动分析系统观察了高能炸药、含铝炸药和温压炸药爆炸产物抛撒的过程;比较了这3种炸药的爆炸产物抛撒运动及后燃特点,通过比较直观地观察到温压炸药爆炸和后燃2个过程,以及后燃火球的成长历程;根据实验结果确定了温压炸药爆炸产物抛撒半径随时间变化的数学表达式。  相似文献   

17.
通过自行设计的爆炸管网设备进行实验,提出通过改变泡沫金属迎爆面的结构来增大与爆炸火焰的接触面积,结合爆炸超压、火焰传播速度和火焰温度等参数来评价不同迎爆面设计结构的泡沫金属的阻隔爆性能。结果表明,在相同厚度的前提下,在材料迎爆面增加一定的锯齿形波纹会使整体的阻隔爆性能有所提升,爆炸超压、火焰传播速度和火焰温度的衰减率随着迎爆面锯齿角度的减小而增大。当泡沫金属迎爆面锯齿角度为30°时,爆炸超压、火焰传播速度和火焰温度的衰减率分别为74.0%、76.18%和91.93%,爆炸超压下降速率为30.76 MPa/s,材料后端熄爆参数为17.68 MPa·℃,阻隔爆效果较好。  相似文献   

18.
为研究Al(OH)3粉体抑爆剂对聚丙烯腈(polyacrylonitrile, PAN)粉尘爆炸的抑制作用,利用透明管道爆炸传播测试系统,研究不同含量的Al(OH)3对PAN粉尘爆炸火焰传播形态、温度等参数的影响,并采用扫描电镜、热重分析仪、傅里叶红外光谱仪研究Al(OH)3抑制PAN粉尘爆炸的微观特征,总结出Al(OH)3对PAN粉尘爆炸的抑制机理。测试结果表明,随着Al(OH)3质量分数的增加,PAN粉尘爆燃的最大火焰传播距离和传播速度逐渐减小。同时压力监控及温度监控结果显示,随着Al(OH)3质量分数的增加,PAN粉尘的最大爆炸压力及最大温度均逐渐减小,由此验证了Al(OH)3对PAN粉尘爆炸的抑制作用,且60%质量比的Al(OH)3的抑制效果最好。通过对PAN粉尘爆炸固态产物表征及热分析的研究,从物理和化学两个方面分析了Al(OH)3对PAN粉尘火焰的抑制机理,物理抑制包括包覆、吸热降温、气体惰化3种方式,化学抑制主要通过消耗维持燃烧爆炸连锁反应的关键自由基?O和?OH减少了自由基?H、?OH与?O之间的放热反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号