首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为提高薄壁管结构耐撞性,以雀尾螳螂虾螯为仿生原型,结合仿生学设计方法,设计一种含正弦胞元的多胞薄壁管结构。以初始峰值载荷、比吸能和碰撞力效率为耐撞性指标,通过有限元数值模拟分析了不同碰撞角度(0o、10o、20o和30o)条件下,仿生胞元数对薄壁管耐撞性的影响,通过多目标的复杂比例评估法获取仿生薄壁管的最优胞元数。基于不同碰撞角度权重因子组合,设置了4种单一角度工况和3种多角度工况,采用多目标粒子群优化方法获取了不同工况下薄壁管结构最优胞元高宽比和壁厚。复杂比例评估结果表明,胞元数为4的薄壁管为最优晶胞数仿生薄壁管。优化结果表明,单一角度工况下,最优结构参数高宽比的范围为0.88~1.50,壁厚的范围为0.36~0.60 mm,碰撞角度为0o和10o的最优高宽比明显小于碰撞角度为20o和30o的;多角度工况下,最优高宽比范围为1.01~1.10,壁厚范围为0.49~0.57 mm。  相似文献   

2.
为提高薄壁管结构的耐撞性和吸能性,基于鹿角骨单位结构特征,结合结构仿生学原理设计出内径相同、外径等梯度逐层递减的仿生薄壁管。采用有限元法对75种仿生薄壁管结构进行10°、20°、30°等3种斜向冲击角度的吸能特性模拟;通过多项式回归元模型和多目标粒子群优化算法进行优化,以Pareto前沿最优原则得到各目标最优化的配置方案;采用最小距离选择法进行优化分析,得到各配置方案的最优结构设计参数。结果表明:仅考虑单一冲击角度时,在10°、20°、30°冲击角度下的仿生薄壁管耐撞性最优的仿生层数n均为6,最大壁厚与厚度梯度值参数组合tmax-a分别为2.84 mm-0.38 mm、2.89 mm-0.29 mm、2.91 mm-0.34 mm;综合考虑多种冲击角度权重因数不同配置方案时,仿生薄壁管耐撞性最优的仿生层数n均为6,最大壁厚与厚度梯度值参数组合tmax-a分别为2.95 mm-0.28 mm、2.92 mm-0.30 mm、2.85 mm-0.33 mm。  相似文献   

3.
多胞薄壁管具有成本低、比强度高、吸能效率高等特点,被广泛用作于能量吸收装置。本研究通过实验验证了有限元模型的准确性,研究了截面拓扑、壁厚梯度对星形衍生多胞薄壁管能量吸收的影响。结果表明:多边形基星形衍生薄壁管边数的增加会降低结构的耐撞性与稳定性;同时,二阶五边形基星形衍生薄壁管具有最大的比吸能及平均压缩力;另外,负梯度结构可以在保留结构拓扑和功能的条件下显著提高结构的耐撞性。  相似文献   

4.
为提高薄壁结构的吸能能力,基于Sierpinski分形结构提出了一种具有层级特性的新型薄壁管,即Sierpinski层级管(Sierpinski hierarchical tube, SHT)。采用非线性有限元法对SHTs在轴向冲击载荷作用下的变形模式和能量吸收特性进行了数值分析,并与普通三角形薄壁管在轴向冲击载荷作用下的变形模式和能量吸收特性进行了对比。结果表明:SHTs的变形模式为轴对称渐进屈曲模式,在薄壁管中引入Sierpinski层级特性后,胞壁弯曲过程的半折叠波长减小,促使压缩过程中形成更多的塑性折叠单元,有利于提高薄壁结构能量吸收能力。进一步基于能量守恒理论和塑性铰理论对SHTs的轴向压缩应力进行理论求解,并通过有限元数值模拟验证其准确性。在相同的相对密度下,一阶、二阶及三阶SHTs的动态压缩应力较普通三角形薄壁管的动态压缩应力提高了85.8%、138.2%和183.8%。将Sierpinski层级特性引入薄壁管的设计中,能够有效提高薄壁管的耐撞性能。  相似文献   

5.
为研发轻质高效的能量吸收装置,提出了基于多边形截面与星形截面混合设计的星形混合多胞管。采用数值模拟方法研究了星形混合多胞管在轴向加载条件下的吸能特性和变形模式,并结合简化超折单元理论推导了该管的平均碰撞力理论公式。研究结果表明,星形混合多胞管的多边形截面与星形截面之间产生了协同效应,额外吸收了更多的冲击动能:当多边形边数N=6时,混合截面的协同性最好;当N=8时,该管的能量吸收效率最高。在此基础上,进一步开展了几何参数分析,发现壁厚对于星形混合多胞管的耐撞性有显著的影响,碰撞力水平随着壁厚的增加而线性增长。此外,星形角度的变化对耐撞性的影响相对较小,碰撞荷载效率和比吸能随着星形角度的增加表现出先增大后减小;当星形角度α=120°时,该管拥有最佳的耐撞性。  相似文献   

6.
研究了非凸薄壁管在轴向冲击下的能量吸收性能,并与方管以及多胞方管进行了比较分析。首先,采用显式非线性有限元分析软件ANSYS/LS-DYNA对比分析了这三类薄壁管在壁厚相同情况下的能量吸收性能。然后,在一定的材料用量限制(相同的质量)、一定的能量吸收量需求以及一定的极限峰值力要求等三种情况,比较了这三类截面薄壁管的冲击能量吸收性能。研究表明,非凸截面管在所研究的四种条件下无论在能量吸收效率还是在载荷一致性方面都远远优于方管。此外,非凸截面薄壁管在能量吸收效率方面也显著优于多胞方管,在载荷一致性方面与多胞方管相比各有优劣。  相似文献   

7.
选用PolyMaxTM PLA为试样材料,利用3D打印技术制备了弧形折纸薄壁管件。基于准静态轴向压缩实验,运用ABAQUS软件对弧形折纸薄壁管件轴向准静态压缩和冲击行为进行了有限元计算,探讨了其变形模式和能量吸收特性,分析了预折角和薄壁单胞管件阵列数量对其压溃模式及能量吸收的影响。有限元计算结果与实验结果吻合较好。薄壁管件的变形过程可分为4个阶段:初始压溃阶段、预折角塑性旋转阶段、腹板塑性屈曲阶段和完全压溃密实化阶段。弧形折痕的引入能够有效地降低薄壁管件在压缩过程中的初始压溃载荷峰值,减小冲击载荷的振荡幅值。对比了高度相等、质量近似相等的方管与弧形折纸薄壁管在不同冲击速度下的压缩变形与能量吸收。在准静态压缩作用下,对于单胞模型,仅有折痕倾角为70°的模型的比吸能优于方管;对于多胞管件阵列模型,方管的比吸能均优于折纸管。折纸管的压缩力效率和比总体效率均优于方管,其中折痕倾角为50°的模型的压缩力效率和比总体效率最高。在动态冲击压缩下,阵列方管的比吸能均优于阵列折纸管。当冲击速度为10 m/s时,折纸管的压缩力效率和比总体效率均优于方管,其中折痕倾角为50°的模型的压缩力效率和比总体效率最高。当冲击速度为20 m/s时,仅有折痕倾角为50°的模型的压缩力效率和比总体效率优于方管。  相似文献   

8.
为提高薄壁夹层结构耐撞性,以虾螯为仿生原型,设计梯度分布的仿生波纹形夹层结构,包括单层、双层和三层波纹结构。以初始峰值载荷Fp、比吸能Es为耐撞性指标,利用有限元法分析了单元高宽比γ(γ1、γ2和γ3分别为单元第1层、第2层和第3层的高宽比)对波纹夹层结构耐撞性的影响,采用多目标粒子群优化方法得到了夹层结构最优参数。结果表明,单层波纹结构耐撞性随单元高宽比γ的增大逐渐变差,双层波纹结构下层结构单元高宽比γ对耐撞性的影响大于上层结构单元高宽比γ对耐撞性的影响,较小的γ值有利于提高三层波纹结构的比吸能。结构优化结果表明:单层结构最优尺寸γ1为0.8;双层结构最优尺寸为γ1 = 0.5和γ2 = 1.2;三层结构最优组合为γ1 = 0.6,γ2 = 0.6和γ3 = 0.9。上述结果可为薄壁夹层结构轻量化设计提供新思路。  相似文献   

9.
在车辆的耐撞性研究中,锥形薄壁管因其具有稳定的力-位移曲线和变形过程,被认为是轴向加载下的一种理想的能量吸收器。设计了两种类型的新型多边形锥管,通过在传统的多边形锥管上引入特殊的折纸图案,诱导结构按预制的折纸图案发生变形,从而提高其在准静态轴向压缩条件下的耐撞性;并通过准静态压缩实验研究了截面边数和壁厚对其变形模式和耐撞性的影响。结果表明:截面边数的增加使结构更容易发生局部屈曲和塑性失稳;增加壁厚会使局部屈曲和塑性失稳相对减弱,但结构会产生更多的裂缝。截面边数N对耐撞性的影响主要体现在初始峰值力上,初始峰值力随N的增加而增加,平均压缩力、比吸能和压缩力效率随N变化无明显规律;壁厚t对耐撞性有较大的影响,初始峰值力、平均压缩力和比吸能都随t的增加而增加,压缩力效率随t增加无明显规律。同时,通过传统六边形锥管(CH6)与两类新型六边形锥管(N6M1和N6M2)对比发现,折纸图案的引入在降低初始峰值力、提高平均压缩力和压缩力效率方面有显著优势。  相似文献   

10.
薄壁非凸截面多胞管轴向冲击耐撞性研究   总被引:2,自引:0,他引:2  
论文结合截面多胞化和截面非凸化这两种提高薄壁管能量吸收性能的方法,设计了一类薄壁非凸截面多胞管能量吸收结构.通过从管截面外轮廓和管内构型两个方面相结合的方法,同时从内外两个方面提高薄壁管的能量吸收性能.新型非凸截面多胞管通过增加截面折角数目并且保持折角在最优范围内,从而使得更多的材料分布在变形剧烈的折角附近以实现提高结构的能量吸收效率的目的.从理论与数值模拟两方面研究了这类新型非凸截面多胞薄壁管在轴向冲击下的能量吸收性能.新型非凸截面多胞管通过截面构型优化,增加了能量吸收效率高的角形部分.研究表明,这类薄壁非凸截面多胞管较传统薄壁方管的能量吸收性能有显著提高,并且其能量吸收性能优于凸多胞管及非凸多边形截面管,还避免了非凸多边形截面薄壁管潜在的整体失稳的问题.  相似文献   

11.
运用移动最小二乘曲面拟合技术和遗传算法优化技术,建立一套完整的结构耐撞性优化设计技 术。设计了一个具有高效吸能能力的薄壁圆管结构含诱导缺陷薄壁圆管结构,给出了含缺陷薄壁圆管结 构耐撞性优化设计结果。结果显示,设计的薄壁圆管结构具有好的吸能效果,该结构设计简单,便于在结构设 计中使用。  相似文献   

12.
厚度或质量连续分布技术对车身薄壁结构的轻量化和性能设计有着非常重要,甚至起到决定性的作用,从设计方法上研究连续变厚度结构在车身零部件中的耐撞性应用是安全性设计所需的主要工作。本文研究一种较新颖的薄壁吸能结构,其管壁厚度按照幂指数形式连续分布,根据此分布特点推导出了该薄壁结构在等质量条件下与其他管状结构(比如均匀管、拼焊管和锥管等)之间相关参数的定量解析关系,给出了前者的耐撞性设计准则,评估了不同梯度对幂指数管耐撞性能的影响。分析结果显示,该新颖管状结构比其他截面管具有更理想的耐撞特性。然后,在2个设计区间内对梯度指数分别采样并构造近似模型,采用遗传算法作为求解器得出了非劣解前沿,研究发现高阶响应面近似模型得到的设计结果不一定是最优的。  相似文献   

13.
薄壁管及其泡沫金属填充结构耐撞性的实验研究   总被引:2,自引:0,他引:2  
对两种AA 6063T6铝合金薄壁空管(方/圆管)结构以及填充泡沫铝的5种不同几何截面的薄壁夹芯管(单方/圆管填充,双方/圆管填充,双方管四角填充结构)分别进行了准静态轴向压缩实验,研究了各种薄壁结构的变形模式和吸能性能,比较了反映不同结构耐撞性的各种参数,如比能量吸收和能量吸收效率因子等。同时,研究了各种填充结构的几何参数对结构耐撞性能的影响,发现填充结构内管的尺寸对结构的耐撞性影响显著。研究结果显示,圆管类型的结构平均压垮载荷、比质量能量吸收、单位行程能量吸收以及能量吸收效率因子都较方管类型结构高。泡沫填充单/双圆管结构由于其较高的压垮力效率和能量吸收效率,能够较平稳高效地吸能,作为耐撞性结构元件具有很大的优势。  相似文献   

14.
Metallic thin-walled round tubes are widely used as energy absorption elements. However, lateral splash of the round tubes under impact loadings reduces the energy absorption efficiency and may cause secondary damage. Therefore, it is necessary to assemble and fasten round tubes together by boundary constraints and/or fasteners between tubes, which increases the time and labor cost and affects the mechanical performance of round tubes. In an effort to break through this limitation, a novel self-locked energy-absorbing system has been proposed in this paper. The proposed system is made up of thin-walled tubes with dumbbell-shaped cross section, which are specially designed to interlock with each other and thus provide lateral constraint under impact loadings. Both finite element simulations and impact experiment demonstrated that without boundary constraints or fasteners between tubes, the proposed self-locked energy-absorbing system can still effectively attenuate impact loads while the round tube systems fail to carry load due to the lateral splashing of tubes. Furthermore, the geometric design for a single dumbbell-shaped tube and the stacking arrangement for the system are discussed, and a general guideline on the structural design of the proposed self-locked energy absorbing system is provided.  相似文献   

15.
薄壁结构是汽车等运载工具的重要防护装置,除了其轴向防撞能力外,侧向耐撞性能分析与提升方式也非常重要。研究基于薄壁结构厚度合理分布的侧向耐撞性能提升方式和建立基于元胞自动机的变厚度薄壁梁侧向耐撞性优化方法。以汽车B柱受力环境和性能要求为设计需求,首先利用所建立的方法给出了连续变厚度的薄壁梁厚度分布设计,其性能较常规的等厚度薄壁梁最大侵入位移大幅下降(下降82%),验证了变厚度设计的有效性;然后,考虑单向变厚度便于柔性轧制工艺制成TRB,给出了轴向连续变厚度薄壁梁的厚度分布设计,该设计较等厚度梁最大侵入位移下降73%;与连续变厚度梁相比,在侵入位移降低量略小的情况下,实现了可制造性。设计实例表明本文提出的连续变厚度设计能够有效提高侧向耐撞性能,所建立的方法能够获得合理的厚度分布设计,是有效的耐撞性优化设计方法。  相似文献   

16.
Thin-walled structures are widely used as energy absorption devices for their proven advantages on lightweight and crashworthiness. However, a majority of studies have being focus on exploring separately the crashworthiness of the thin-walled structure with a specific geometric section, such as circular, square, hexagon, octagon etc., and little research has investigated the relationship of crashworthiness among thin-walled structures with different sections systematically. This paper utilizes Fourier series expansion to generate a series of novel sectional configurations, namely Fourier varying sectional tubes (FVSTs), to look into their advantages of crashworthiness, thereby developing some FVSTs with highest possible energy absorption capacity. Based on the validated finite element (FE) models, parametric analysis is conducted to investigate the effects of cross-sectional configuration, perimeter and thickness of FVSTs on collapse mode and energy absorption. The results showed that the collapse modes of FVSTs are fairly sensitive to cross-sectional configuration, perimeter and wall thickness. Of these FVSTs generated, the highest specific energy absorption (SEA) increases 77.54% by increasing perimeter and 69.73% by decreasing wall thickness. Finally, a discrete optimization based on the orthogonal arrays is conducted to obtain the optimal FVST for maximizing SEA under the constraint of the initial peak crushing force (IPCF). The optimized FVSTs are of superior crashworthiness and great potential as an energy absorber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号