首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanofibrillar cellulose aerogels   总被引:3,自引:0,他引:3  
Highly porous aerogels consisting of cellulose nanofibrils were prepared by dissolution/regeneration of cellulose in aq. calcium thiocyanate followed by regeneration and carefully controlled drying. The influence of drying method (regular freeze drying, rapid freeze drying, and solvent exchange drying) on resulting porosity was studied by electron microscopy and nitrogen adsorption. While regular freeze drying caused significant coalescence of microfibrillar units, solvent exchange drying gave highly porous aerogel composed of approx. 50 nm-wide cellulose microfibrils. Correspondingly, specific surface area of the solvent-exchange-dried aerogels ranged 160–190 m2/g, in contrast to 70–120 m2/g of regular freeze-dried materials. Rapid freeze technique using liquid nitrogen-cooled metal plate gave aerogel sheets with asymmetrical porosity, with the face contacted by copper having porous structure similar to those of solvent-exchange dried material.  相似文献   

2.
We have developed flame-retarded hydrophobic cellulose-based materials by producing in situ water-soluble and insoluble inorganic microparticles on various surfaces of native cellulose (filter paper and pure cotton textile). The nanoparticles were produced by simple impregnation of cellulose with two different aqueous solutions followed by a third impregnation with supercritical CO2. Finally, the composite cellulose materials were covered by a silicon-based polymer thin film, to turn it into hydrophobic and prevent the water-soluble particles from absorbing humidity. The obtained flame-retardant behaviour is due to a combination of mechanisms. The total treatment of cellulose has an impact on, both its surface morphology and its hydrophilicity. Thus, the hydrophobic nature of the silicon-based polymer film along with the roughness caused by the presence of the inorganic particles and the inherent roughness of native cellulose resulted in superhydrophobic behaviour. The same process-concept was also applied to regenerated (from newspaper) cellulose with ionic liquids. The produced materials were characterised by thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy and water contact angle measurements.  相似文献   

3.
Small-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO2) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T=35 and 80 degrees C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from rho(CO2) approximately 0 to 0.9 gcm3. The intensity of scattering from CO2-saturated Vycor porous glass can be described by a two-phase model which suggests that CO2 does not adsorb on the pore walls and fills the pore space uniformly. In CO2-saturated aerogels an adsorbed phase is formed with a density substantially higher that of the bulk fluid, and neutron transmission data were used to monitor the excess adsorption at different pressures. The results indicate that adsorption of CO2 is significantly stronger in aerogels than in activated carbons, zeolites, and xerogels due to the extremely high porosity and optimum pore size of these materials. SANS data revealed the existence of a compressed adsorbed phase with the average density approximately 1.07 gcm3, close to the density corresponding to closely packed van der Waals volume of CO2. A three-phase model [W. L. Wu, Polymer 23, 1907 (1982)] was used to estimate the volume fraction phi3 of the adsorbed phase as a function of the fluid density, and gave phi3 approximately 0.78 in the maximum adsorption regime around rho(CO2) approximately 0.374 gcm3. The results presented in this work demonstrate the utility of SANS combined with the transmission measurements to study the adsorption of supercritical fluids in porous materials.  相似文献   

4.
Liquid or supercritical carbon dioxide has important environmental and economic advantages over petrochemical solvents currently used for industrial processes. However, low solubility in CO2, particularly of polar compounds, is a hurdle to its implementation as an acceptable alternative. These solubility problems have been overcome by employing specialised fluorinated surfactants to stabilise water nano-droplets as water-in-supercritical/liquid CO2 microemulsions. Such novel microemulsions can now facilitate innovative ‘green-and-clean’ applications of carbon dioxide technology.  相似文献   

5.
6.
Alumina aerogels with surface areas from 460 to 840 m2/g and bulk densities from 0.025 to 0.079 g/cm3 were successfully fabricated using variations of an aluminum isopropoxide-based recipe developed by Armor and Carlson and the rapid supercritical extraction (RSCE) process developed at Union College. By utilizing the Union College RSCE method, it is possible to convert an alumina aerogel precursor mixture into aerogel monoliths in as little as 7.5 h. This process is safer than methanol extraction in an autoclave and faster and simpler than liquid CO2 solvent exchange and extraction. By increasing the concentration of aqueous HNO3 used in the precursor mixture, we were able to fabricate aerogels with significantly increased surface area, decreased bulk density, and altered microstructure. We attribute the observed variation in these aerogel properties at a given HNO3 concentration to environmental factors such as humidity. The ability to more easily fabricate alumina aerogels with desirable properties will assist in making them a viable option for catalytic and other applications.  相似文献   

7.
We prepared from cellulose fibres monolithic aero- and cryogels. Cellulose is dissolved in hydrated calciumthiocyanate melt, gelled, aged and dried by several methods. The density of cellulose aerogels produced by supercritical drying is in the range between 10 and 60 kg/m3 with a surface area of 200–220 m2/g. The cellulose cryogels produced by freeze drying exhibit a maximum surface area of 160 m2/g. Sputtered cellulose aero- and cryogels are examined with a scanning electron microscope. The results are discussed with respect to the literature and simple mathematical models.  相似文献   

8.
Hydrophobic silica aerogels have been prepared using the rapid supercritical extraction (RSCE) technique. The RSCE technique is a one-step methanol supercritical extraction method for producing aerogel monoliths in 3 to 8 h. Standard aerogels were prepared from a tetramethoxysilane (TMOS) recipe with a molar ratio of TMOS:MeOH:H2O:NH4OH of 1.0:12.0:4.0:7.4 × 10−3. Hydrophobic aerogels were prepared using the same recipe except the TMOS was replaced with a mixture of TMOS and one of the following organosilane co-precursors: methytrimethoxysilane (MTMS), ethyltrimethoxysilane (ETMS), or propyltrimeth-oxysilane (PTMS). Results show that, by increasing the amount of catalyst and increasing gelation time, monolithic aerogels can be prepared out of volume mixtures including up to 75% MTMS, 50% ETMS or 50% PTMS in 7.5–15 h. As the amount of co-precursor is increased the aerogels become more hydrophobic (sessile tests with water droplets yield contact angles up to 155°) and less transparent (transmission through a 12.2-mm thick sample decreases from 83 to 50% at 800 nm). The skeletal and bulk density decrease and the surface area increases (550–760 m2/g) when TMOS is substituted with increasing amounts of MTMS. The amount of co-precursor does not affect the thermal conductivity. SEM imaging shows significant differences in the nanostructure for the most hydrophobic surfaces.  相似文献   

9.
数十年来,碳气凝胶因其在催化剂载体、电容器和锂电池电极材料以及吸附剂等领域的潜在应用而备受关注.然而,传统碳气凝胶的制备往往使用昂贵且有毒的前驱体,其方法也较为复杂,不利于大规模生产及应用.本文介绍了一种以细菌纤维素为前驱体制备氮掺杂碳纤维气凝胶的方法.该方法廉价高效,简单易行且对环境无害.所制气凝胶具有密度低、孔隙度高、比表面积大以及导电性良好等优点.它继承了细菌纤维素生物质优异的三维交联多孔结构的特点,可直接用作氧还原催化剂,表现出优异的催化性能,预示着其广泛的应用前景.这在该领域的应用报道尚属首次.  相似文献   

10.
The aim of this work was to study the solubility in supercritical CO2 of the hydrated phase of three model drugs, namely theophylline, carbamazepine, and diclofenac sodium, in comparison with the respective anhydrous form. Possible solid-state modifications, stemming from the interaction with supercritical CO2, were investigated by differential scanning calorimetry, thermogravimetric analysis, hot stage microscopy, Fourier Transform infrared spectroscopy and Karl-Fischer titrimetry. It was found that all three pharmaceutical hydrates exhibited higher solubility in supercritical CO2 than the relevant anhydrous phases. In the case of theophylline monohydrate, the instability of the crystal phase at the experimental temperature adopted has been evidenced. Diclofenac sodium tetrahydrate represents a peculiar case of chemical interaction with the acid supercritical fluid, mediated by crystal water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
HgCO3·2HgO (mercury oxide carbonate), along with partly unreacted reactants, was obtained by exploring the behaviour of the Hg2Cl2/HgO binary system in supercritical CO2 (scCO2) at 200°C, 22000 kPa in the presence and absence of water, using a self-made laboratory-scale system. The reaction of pure HgO with scCO2 aimed at the synthesis of HgCO3 (mercury carbonate), also yielded the same product. Meanwhile, with a small amount of water present in the Hg2Cl2/HgO-scCO2 system, at 200°C, 22000 kPa, the mineral terlinguaite (Hg4O2Cl2) was obtained instead of mercury oxide carbonate. Repeating this reaction under the same conditions, but in the absence of CO2, again resulted in the synthesis of terlinguaite, leading to the assumption that the scCO2 had no influence on the synthesis of terlinguaite. This study reveals a new moisture-free laboratory method and conditions for the permanent fixation of CO2 by HgO. This method bears two benefits: 1) it can be introduced to reduce the Hg content in flue gas and fly ash emitted from coal-burning power plants and municipal waste incinerators; 2) it can contribute to CO2 mineralisation in montroydite (HgO) geological formations as mercury oxide carbonate.  相似文献   

12.
Dendrimer-encapsulated nanoparticles are shown to be versatile catalysts for both the hydrogenation of styrene and Heck heterocoupling of iodobenzene and methacrylate in supercritical CO2 (scCO2).  相似文献   

13.
The bending rigidity of surfactant membranes in novel bicontinuous CO(2)-microemulsions of the type H(2)O/NaCl-scCO(2)-Zonyl FSH/Zonyl FSN 100 was determined using both high pressure small angle neutron scattering and neutron-spin echo spectroscopy. As an important result it was found, that the stiffness of the membrane increases solely by an increase of the pressure.  相似文献   

14.
利用离子液体AmimCl溶解结合超临界CO2干燥的方法制备了纤维素气凝胶材料.研究了不同初始浓度的纤维素溶液及其在不同凝固浴中制备的纤维素凝胶的流变行为,进一步考察了纤维素溶液浓度和凝固浴种类对纤维素气凝胶材料结构的影响.结果表明,随着初始纤维素溶液浓度的增大,气凝胶的孔结构逐渐致密,比表面积随之减小;凝固浴的组成对纤维素气凝胶的结构也有较大影响.采用适当的制备条件,可以制备出高比表面积的纤维素气凝胶材料.对纤维素气凝胶的热性能进行了表征,结果表明所得到的气凝胶材料具有较好的热稳定性和较高的炭残余含量.  相似文献   

15.
This communication describes the reaction chemistry of singlet oxygen in supercritical carbon dioxide, demonstrating rapid and quantitative conversion of alpha-terpinene to ascaridole.  相似文献   

16.
The equilibrium sorption and swelling behavior of four different polymers—poly(methyl methacrylate), poly(tetrafluoroethylene), poly(vinylidene fluoride), and the random copolymer tetrafluoroethylene–perfluoromethylvinylether–in supercritical CO2—are studied at different temperatures (from 40 to 80 °C) and pressures (up to 200 bar). Swelling is measured by visualization, and sorption through a gravimetric technique. From these data, the behavior of amorphous and semicrystalline polymers can be compared, particularly in terms of partial molar volume of CO2 in the polymer matrix. Both poly(methyl methacrylate) and the copolymer of tetrafluoroethylene exhibit a behavior typical of rubbery systems. On the contrary, polymers with a considerable degree of crystallinity, such as poly(tetrafluoroethylene) and poly (vinylidene fluoride), show larger values of partial molar volume. These can be related to the limited mobility of the polymer chains in a semicrystalline matrix, which causes the structure to “freeze” during the sorption process into a nonequilibrium state that can differ significantly from the actual thermodynamic equilibrium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1531–1546, 2006  相似文献   

17.
Direct synthesis of zirconia aerogel nanoarchitecture in supercritical CO2   总被引:2,自引:0,他引:2  
The objective of the present study was to synthesize porous ZrO2 aerogels with a nanostructure via a direct sol-gel route in the green solvent supercritical carbon dioxide (scCO2). The synthesis involved the coordination and polycondensation of a zirconium alkoxide using acetic acid in CO2, followed by scCO2 drying and calcination. Either a translucent or opaque monolith was obtained, which was subsequently characterized by electron microscopy, X-ray diffraction, thermal analysis, N2 physisorption, and infrared spectroscopy analysis. The electron microscopy results showed that the translucent monolithic ZrO2 exhibited a well-defined mesoporous structure, while the opaque monolith, formed using added alcohol as a cosolvent, was composed of loosely compacted nanospherical particles with a diameter of ca. 20 nm. After calcination at 400 and 500 degrees C, X-ray diffraction results indicated that the ZrO2 exhibited tetragonal and/or monoclinic phases. In situ infrared spectroscopy results showed the formation of a Zr-acetate coordinate complex at the initial stage of the polycondensation, followed by further condensation of the complex into macromolecules.  相似文献   

18.
《Fluid Phase Equilibria》1999,166(1):39-46
Solubilities of lactic acid and 2-hydroxyhexanoic acid in supercritical CO2 have been measured at T=(311 or 313, 318, 328 K) in the pressure range from 50 to 200 bar. The measurements have been performed using a flow-type apparatus. The solute solubility in compressed carbon dioxide increased with pressure at all investigated temperatures. At pressures below 130 bar, a solubility decrease on temperature increase was observed. An accurate correlation method for the solubility of low volatile substances in supercritical CO2 has been applied for the interpolation of the experimental results.  相似文献   

19.
Pulsed, supersonic beams of pure carbon monoxide and carbon dioxide at stagnation conditions above their critical point have been investigated by time-of-flight measurements as a function of pressure and temperature. Although both molecules form clusters readily in adiabatic expansions, surprisingly large speed ratios (above 100) indicative of very low translational temperatures (below 0.1 K) have been achieved. In particular, the supersonic expansion of CO(2) at stagnation temperatures slightly above the phase transition to the supercritical state results in unprecedented cold beams. This efficient cooling is attributed to the large values of the heat capacity ratio of supercritical fluids in close vicinity of their critical point.  相似文献   

20.
皮革的CO2超临界流体脱灰   总被引:8,自引:0,他引:8  
浸灰和脱灰是皮革制造过程的重要工序。在浸灰工序中,通过高浓度石灰乳液对动物皮的长时间处理,使其纤维介质被溶解,胶原纤维得到分散。脱灰是其后续工序,目的是除去动物皮中吸附和沉积的Ca2+;调节pH值至中性并使其肿胀状态得以消除;促进鞣铬剂的发渗而与胶原纤维有效结合。常规制革工艺中,铵盐被广泛用作脱灰剂,其缺点是中和作用不充分不能有效除去Ca2+,Ca2+与动物油脂反应会产生“钙斑”,并产生令人不愉快的氨污染环境。而硼酸、甲酸、乙酸、柠檬酸等以单独或组合方式与铵盐一道用于脱灰[1]价格昂贵,还易引起裸皮的酸肿影响皮…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号