首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The present study investigates the application of periodic type diffusers for improving the acoustics in classrooms and proposes an optimum combination of absorptive and diffusing treatments for achieving preferred acoustics in classrooms. The measurements were carried out in a 1/10 scale model classroom, adding different amounts of absorptive and diffusing materials to one or more of five surfaces of the room. Adding absorptive materials on the entire ceiling area and diffusers on each wall increased early-to-late arriving sound ratio (C50) values corresponding to higher clarity. Adding diffusers on 25% of the ceiling area with the other 75% absorptive was more beneficial for achieving higher G50 and G values than adding absorptive materials on the entire ceiling. Diffusers were beneficial for enhancing the early arriving reflection energy (G50) at the most distant seats and they resulted in achieving more uniform acoustical conditions across the room. The treatment of the front wall with diffusers was found to lead to better acoustical conditions than treating the rear and side walls with diffusers. Adding diffusers on the ceiling and lower front wall or side wall and adding diffusers on the ceiling and absorptive materials on the lower front wall were selected for consideration as the more successful treatments for classroom acoustic design.  相似文献   

2.
A room acoustic diffuser breaks up reflected wavefronts, and this can be achieved by presenting a spatially varying surface impedance. In hybrid surfaces, varying impedance is achieved by patches of absorption and reflection, giving reflection coefficients nominally of 0 and 1. These surfaces are hybrids, absorbing some of the incident sound while diffusing any reflected energy. A problem with planar hybrid surfaces is that specular energy is only removed by absorption. By exploiting interference, by reflecting waves out-of-phase with the specular energy, it is possible to diminish the specular energy further. This can be achieved by using a diffuser based on a ternary sequence that nominally has reflection coefficients of 0, -1, and +1. Ternary sequences are therefore a way of forming hybrid absorber-diffusers that achieve better scattering performance without additional absorption. This paper discusses methods for making ternary sequence diffusers, including giving sequence generation methods. It presents prediction results based on Fourier and boundary element method models to examine the performance. While ternary diffusers have better performance than unipolar binary diffusers at most frequencies, there are frequencies at which the performances are the same. This can be overcome by forming diffusers from four-level, quadriphase sequences.  相似文献   

3.
Developing efficient sound absorption materials is a relevant topic for large scale structures such as gymnasiums, shopping malls, airports and stations. This study employs artificial neural network (ANN) algorithm to estimate the sound absorption coefficients of different perforated wooden panels with various setting combinations including perforation percentage, backing material and thickness. The training data sets are built by carrying out a series of experimental measurements in the reverberation room to evaluate the sound absorption characteristics of perforated wooden panels. A multiple linear regression (MLR) model is also developed for making comparisons with ANN. The analytical results indicate that the ANN exhibits satisfactory reliability of a correlation between estimation and truly measured absorption coefficients of approximately 0.85. However, MLR cannot be applied to nonlinear cases. ANN is a useful and reliable tool for estimating sound absorption coefficients estimation.  相似文献   

4.
Potentially sand panels could be used as novel sound absorbing materials that are fire resistant, environmentally friendly, mechanically strong and have good durability. However, the performance of sand panels as sound absorbers has not yet been studied. Results of measurements in a reverberation chamber of the random-incidence absorption coefficients of 13 different sand panel compositions and configurations with air gaps are reported. Also the flow resistivities and bulk densities have been measured. The results prove that sand panels could offer effective and wide-band acoustic absorption. As is the case with conventional sound absorbing materials, adding an air space is found to be the most effective way to widen the absorption bands and improve the overall absorption. Comparisons of the measured sand panel absorption data with predictions of the Delany and Bazley and Voronina models reveal that, while neither model is very accurate, the former gives more accurate predictions especially for sand panels with lower flow resistivity and smaller thickness.  相似文献   

5.
《Applied Acoustics》1987,21(1):1-11
Measurements in four rooms with volumes between 106 and 607 m3 give significant differences in the value of the sound absorption coefficient at low frequencies. There is little variation with volume at high frequencies. In two rooms, 204 and 607 m3 in volume, no significant change in absorption coefficient is observed at low frequencies when the amount of diffusing elements in the room is changed. This is in contrast to the well-known variation with number of diffusers that occurs at high frequencies.  相似文献   

6.
In the usual method of measurement, the structure is placed between two semi-reverberant rooms and diffuse sound fields are used. This paper describes measurements made in conditions of high absorption, with a single directional source. Thus the results should be of value where information on the insulation of glass panels is required for use in high absorption environments, such as recording studios or anechoic laboratories. Microphone measurements are compared with the predicted transmission loss from a capacitive transducer and the effect of sealing the panels is described. Both the microphone measurements and the corrected transducer results are in good agreement with the mass law. The improvement obtained by sealing is an average of about 6dB but large increases in insulation are found at low frequencies. The velocity amplitude is lower than the theoretical value.  相似文献   

7.
An in situ measurement method is proposed for obtaining the normal surface impedance and absorption coefficient of porous materials using two microphones located close to the material without a specific sound source such as a loudspeaker. Ambient environmental noise that does not excite distinct modes in the sound field is employed as the sound source. Measurements of the normal surface impedance of glass wool and rockwool have been made using this method in various sound fields. The repeatability and wide applicability of the method are demonstrated by comparing results of measurements in one room with different noise conditions and in three other environments (corridor, cafeteria and terrace). The assumed diffuse nature of the sound field on the material is validated by using absorption characteristics obtained experimentally at oblique incidence. This method allows simple and efficient in situ measurements of absorption characteristics of materials in a diffuse field.  相似文献   

8.
This study concerns the determination of an equivalent acoustic absorption model of the flat heterogeneous walls present in industrial rooms. Numerous measurements of the reverberation time in reverberant room were carried out for several facings with different distributed spatial absorption. Experimental results were compared to classical reverberation time models. The measurements showed that the change in average acoustic absorption depends on the relative distance between the sound source and the absorbent panels, as it is this which creates heterogeneity. Therefore, taking into consideration, in the theoretical models of average acoustic absorption studied, the solid angles representing the equivalent area of the panels as viewed by the source, improved the accuracy of the calculated reverberation time compared to the measurements. This equivalent acoustic absorption model, based on Sabine's absorption coefficient and employing the solid angle ratio, was used to calculate the reverberation time of several industrial rooms. The results obtained are better than those obtained with the standard formula.  相似文献   

9.
Microperforated panel (MPP) absorbers are promising as a basis for the next-generation of sound absorbing materials. MPPs are typically made of a thin metal or plastic panel. However, thin limp panels are generally not suitable as an interior finish of room walls because they do not have sufficient strength, which prevents practical application of MPPs as an interior finish of room walls. In order to overcome the lack of appropriate strength required for room walls, it is possible to make an MPP out of a thick panel. However, thick MPPs are usually not efficient because the resistance and/or reactance become too high. In this study, trial production of thick MPPs and measurement of their normal absorption coefficients were carried out. Results show that efficient absorption can be given with a thick MPP by using a tapered perforation.  相似文献   

10.
The experimental results presented in this study aim at providing an useful insight into the accuracy of the measurement procedure of the random-incidence scattering coefficient as defined in ISO 17497-1:2004. A systematic experimental investigation has been conducted in a full-scale reverberation room. The tested diffusers are characterized by different geometrical distributions of hollow wooden cubes with an edge length of 20 cm, and different configurations of the measurement set-up. The accuracy of the measurement results has been evaluated considering the contribution of the different undefined aspects of the ISO method such as the microphones height, the air gap underneath the turntable, the sample shape, and the correction of the effects of the absorption and scattering coefficients of the base plate. The results showed that the accuracy of the measurement increases when a more rigid turntable and a circular sample are used, and when the air gap below the turntable is covered. Furthermore, the distance of the microphones from the sample surface was found to affect significantly the results, thus to influence the accuracy of the measurements.  相似文献   

11.
Precast panels are widely used for the construction of large industrial buildings, trade centres and apartment houses. These buildings have to comply with prescribed noise and thermal requirements, so the possibility to accurately estimate the sound reduction index of such panels is of vital importance. The sound reduction index can be determined through measurements carried out in a laboratory or on an already mounted real-scale panel, but both solutions present problems. For example, precast structures consisting of two concrete panels coupled via an interlayer can be very bulky and heavy, and measurements in standard sound transmission laboratories may be impossible to carry out. In some countries, predictions based on theoretical models are accepted in lieu of measurements. Following this approach, the application of simple models, not accounting for the influence of coincidence and of losses, is not sufficient to make acceptable predictions. In this paper, an alternative method to estimate the sound reduction index of precast panels is proposed. Different panels have been considered in the study, each of which has been modelled by a mathematical representation found in the literature. It will be shown that all of these models can be synthesised by a common mathematical formulation, allowing the sound reduction index to be determined from point mobility measurements. The effectiveness of the new method has been investigated by comparing predicted and measured results, obtained in a sound transmission laboratory satisfying existing ISO standards.  相似文献   

12.
Most conventional diffusers take the form of a surface based treatment, and as a result can only operate in hemispherical space. Placing a diffuser in the volume of a room might provide greater efficiency by allowing scattering into the whole space. A periodic cylinder array (or sonic crystal) produces periodicity lobes and uneven scattering. Introducing defects into an array, by removing or varying the size of some of the cylinders, can enhance their diffusing abilities. This paper applies number theoretic concepts to create cylinder arrays that have more even scattering. Predictions using a boundary element method are compared to measurements to verify the model, and suitable metrics are adopted to evaluate performance. Arrangements with good aperiodic autocorrelation properties tend to produce the best results. At low frequency power is controlled by object size and at high frequency diffusion is dominated by lattice spacing and structural similarity. Consequently the operational bandwidth is rather small. By using sparse arrays and varying cylinder sizes, a wider bandwidth can be achieved.  相似文献   

13.
Theoretical and experimental investigations on the performance of micro-perforated -panel absorbers are reviewed in this paper. By reviewing recent research work, this paper reveals a relationship between the maximum absorption coefficient and the limit of the absorption frequency bandwidth. It has been demonstrated that the absorption frequency bandwidth can be extended up to 3 or 4 octaves as the diameters of the micro-holes decrease. This has become possible with the development of the technologies for manufacturing micro-perforated panels, such as laser drilling, powder metallurgy, welded meshing and electro-etching to form micrometer order holes. In this paper, absorption characteristics of such absorbers in random fields and in high sound intensity are discussed both theoretically and experimentally. A new absorbing structure based on micro-perforated-panel absorbers demonstrate experimentally high sound absorption capability. This review shows that the micro-perforated-panel absorber has potentials to be one of ideal absorbing materials in the 21st century.  相似文献   

14.
一种现场测量材料吸声特性的新方法   总被引:8,自引:0,他引:8  
匡正  叶超  吴鸣  杨军 《声学学报》2010,35(2):162-168
现有的材料吸声系数测量方法主要有混响室法和驻波管法,都属于实验室测量方法,不适合现场测量。使用普通扬声器的反射法可以对材料的吸声特性进行现场测量,但是对材料尺寸和测试环境有较高的要求。本文利用参量阵非线性自解调可听声的高指向性和在阵长距离内的平面波特性,结合传递函数法,测量材料的吸声系数,并与传统驻波管测量结果进行了对比。结果表明在普通房间条件下,不需要驻波管,混响室等实验环境,即可对小尺寸的材料进行吸声系数的现场快速测量,具有较大的实用性。   相似文献   

15.
The direct consequence of irradiation on a material is the creation of point defects-typically interstitials and vacancies, and their aggregates-but it is the ultimate fate of these defects that determines the material's radiation tolerance. Thus, understanding how defects migrate and interact with sinks, such as grain boundaries, is crucial for predicting the evolution of the material. We examine defect properties in two polymorphs of TiO(2)-rutile and anatase-to determine how these materials might respond differently to irradiation. Using molecular statics and temperature accelerated dynamics, we focus on two issues: how point defects interact with a representative grain boundary and how they migrate in the bulk phase. We find that grain boundaries in both polymorphs are strong sinks for all point defects, though somewhat stronger in rutile than anatase. Further, the defect kinetics are very different in the two polymorphs, with interstitial species diffusing quickly in rutile while oxygen defects-both interstitials and vacancies-are fast diffusers in anatase. These results allow us to speculate on how grain boundaries will modify the radiation tolerance of these materials. In particular, grain boundaries in rutile will lead to a space charge layer at the boundary and a vacancy-rich damage structure, while in anatase the damage structure would likely be more stoichiometric, but with larger defects consisting primarily of Ti ions.  相似文献   

16.
针对经典边界元方法对掠入射角度下的散射估计精度较低的问题,发展了一种边界无网格模型.此模型将散射体视为具有无限延伸的形式,避免了经典边界元法中薄板形式所导致的声压差问题,而且更加符合实际房间中散射体的存在形式;模型利用无网格算法实现数值仿真,可对任意表面形状特别是曲面散射体具有更高的仿真精度。利用边界无网格模型计算了不同形状散射体的散射系数及散射声场,并将结果与解析方法、测量实验进行了对比.对比结果表明,边界无网格模型可以准确预测散射体的散射性质,特别是对掠入射角度的估计要优于经典边界元法.研究结论可应用于室内声学散射体特征预测及优化设计,对提高声场扩散及室内音质水平具有重要意义.   相似文献   

17.
In this study, we demonstrated that microscale surface undulations induced by acid treatment could serve as the surface relief on diffusers coated with a layer of PDMS polymer. Since the orientation of undulations was found to be always disordered, these undulations would scatter light uniformly. The periodicity of the undulations could be adjusted by the control of duration of the dipping of the elastomer into H2SO4/HNO3 solutions and by the volume ratio of H2SO4/HNO3 the solution, resulting in the modulation of diffusing ability of diffusers. The optical properties, transmittance, and light diffusivity, were characterised. This proposed approach offers potential for mass production of surface-relief diffusers. In addition, the proposed method allows the creation of undulations on arbitrary substrates.  相似文献   

18.
Yin L  Wang Q  Zhang Q  Jiang H 《Optics letters》2007,32(17):2556-2558
We present a new method that can provide high resolution images of absolute optical absorption coefficient in heterogeneous turbid media. In this method, acoustic measurements in conventional photoacoustic tomography are combined with diffusing light measurements to separate the product of absorption coefficient and optical fluence or photon density. We validate this method using a series of tissuelike phantom experiments. The experimental results show that targets as small as 0.5 mm in diameter with optical absorption contrasts as low as 1.5 relative to a 50 mm diameter scattering background medium can be clearly detected.  相似文献   

19.
Microperforated panels (MPPs) coupled to a rigid wall have been proposed recently as an alternative to porous absorbers in situations having concerns with bacterial contamination and small particles discharge, like food, pharmaceutical and microelectronic industries. There exists also an increasing interest for MPP absorbers in the transportation industry and civil engineering. In general, an optimally designed MPP with good broadband absorption requires many submillimetric holes distributed over a panel of also submillimetric thickness. Such thin plates or foils become so fragile that they need to be protected from mechanical damage. In this paper, an alternative strategy is investigated which allows the design of MPPs with panels of millimetric thickness while maintaining their acoustic performance. These absorbers, named microperforated insertion units (MIUs), avoid the structural problems of the classical MPPs. An assessment of the sound absorption properties of these structures is presented. Comparisons between calculations and measurements are also made under two experimental conditions: plane waves at normal incidence (impedance tube) and free field (anechoic room).  相似文献   

20.
材料吸声系数双传声器测量的参数识别方法   总被引:1,自引:0,他引:1       下载免费PDF全文
胡恒  郑四发  郝鹏  连小珉 《应用声学》2008,27(4):305-310
本文提出了在普通房间中利用双传声器对多孔性和纤维性吸声材料吸声系数测量时的参数识别方法。利用Delany&Bazley经验模型对测量数据进行了参数识别,建立了材料的阻抗模型,并计算出材料全频带的吸声系数。与驻波管方法得到的吸声系数相比,在0~3000Hz范围内,二者都能较好地吻合。通过在不同的环境中进行对比测试,说明该方法具有较好的重复性和准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号