首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Synthesis and characterization of inverted porphyrins containing S, Se, and O are reported. A simple 3 + 1 MacDonald-type condensation using modified tripyrrane containing the N-confused ring and diols afforded various N-confused porphyrins 6a-f in 19-30% yield. The single-crystal X-ray structure of 6b shows a ruffled conformation with tilt angles of 21.11 degrees and 31.23 degrees for the N-confused ring and the adjacent pyrrole ring III, respectively, revealing its severe nonplanarity. Significant changes in C alpha-C beta, C beta-C beta, and C alpha-X bond lengths are observed in 6b relative to free thiophene and pyrrole, suggesting the altered delocalization pathway in the modified N-confused porphyrins. The two molecules in the unit cell show a cyclophane-type noncovalent dimer with a face to face orientation of two N-confused pyrrole rings as a result of the presence of weak N-H...N and C-H...N intermolecular hydrogen bonds involving pyrrole-NH, the N atom of the N-confused ring, and the C atom of the pyrrole ring. A detailed 1H and 13C NMR study by 1D and 2D methods allowed assignments of all the peaks in the free base and protonated forms. NMR studies reveal the presence of three different tautomeric forms in solution for 6c in CDCl3 at low temperature. UV-visible studies reveal absorption band shifts upon heteroatom substitution, and the magnitudes of these shifts are dependent on the nature of the heteroatom. In all cases both monoprotonated and diprotonated species have been identified, and on addition of acid, the first proton goes to the outer N2 atom of the N-confused ring.  相似文献   

2.
Two new thorium chalcophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction, diffuse reflectance, and Raman spectroscopy: Cs4Th2P6S18 (I); Rb7Th2P6Se21 (II). Compound I crystallizes as colorless blocks in the triclinic space group P1 (No. 2) with a = 12.303(4) A, b = 12.471(4) A, c = 12.541(4) A, alpha = 114.607(8) degrees, beta = 102.547(6) degrees, gamma = 99.889(7) degrees, and Z = 2. The structure consists of (Th2P6S18)(4-) layers separated by layers of cesium cations and only contains the (P2S6)(4-) building block. Compound II crystallizes as red blocks in the triclinic space group P1 (No. 2) with a = 11.531(3) A, b = 12.359(4) A, c = 16.161(5) A, alpha = 87.289(6) degrees, beta = 75.903(6) degrees, gamma = 88.041(6) degrees, and Z = 2. The structure consists of linear chains of (Th2P6Se21)(7-) separated by rubidium cations. Compound II contains both the (PSe4)(3-) and (P2Se6)(4-) building blocks. Both structures may be derived from two known rare earth structures where a rare earth site is replaced by an alkali or actinide metal to form these novel structures. Optical band gap measurements show that compound I has a band gap of 2.8 eV and compound II has a band gap of 2.0 eV. Solid-state Raman spectroscopy of compound I shows the vibrations expected for the (P2S6)(4-) unit. Raman spectroscopy of compound II shows the vibrations expected for both (PSe4)(3-) and (P2Se6)(4-) units. Our work shows the remarkable diversity of the actinide chalcophosphate system and demonstrates the phase space is still ripe to discover new structures.  相似文献   

3.
Reaction of M(NO3)2.xH2O (M = Mn, Co, Ni, Cu, Zn) with 3-diphenylamino-4-hydroxycyclobut-3-ene-1,2-dione (diphenylaminosquarate) produces the neutral polymeric species (M[mu-(C6H5)2NC4O3]2[H2O]2)n [M = Mn (1), Cu (2)]; (M[mu-(C6H5)2NC4O3][(C6H5)2NC4O3][H2O]3)n [M = Co (3), Zn (4)]; and in the case of Ni, the salt [Ni(H2O)6][(C6H5)2NC4O3]2.2H2O (5). Complexes 1 and 2 are isomorphous and crystallize in the monoclinic space group P2(1)/c with, for 1, a = 13.138(1) A, b = 10.900(2) A, c = 9.269(2) A, beta = 96.07(1) degrees, and Z = 2. Complexes 3 and 4 are also isomorphous and crystallize in the space group P2(1)/c with, for 3, a = 13.211(1) A, b = 11.038(1) A, c = 18.748(1) A, beta = 97.75(1) degrees, and Z = 4. The nickel salt, 5, crystallizes in the triclinic space group P1 with a = 6.181(1) A, b = 9.417(1) A, c = 15.486(1) A, alpha = 101.37(1) degrees, beta = 95.51(1) degrees, gamma = 107.57(1) degrees, and Z = 1. In 1 and 2, the metal coordination is octahedral, comprising four mu-1,3-bridging diphenylaminosquarate ligands and two trans aqua ligands. In 3 and 4, the metal coordination is again octahedral, comprising two mu-1,3-bridging and one pendant diphenylaminosquarate ligands, the octahedron being completed by three aqua ligands in a meridional configuration. In 5, the hexaaquanickel(II) ion is linked by O-H...O hydrogen bonds to a pair of diphenylaminosquarate anions. These anion-cation units are linked via included water molecules to form hydrogen-bonded chains. The diphenylaminosquarate ligands in the polymeric complexes 1-4 display multiple-bond localization, a feature which is absent in 5. Complex 1 exhibits weak antiferromagnetic coupling, whereas 2 shows no significant magnetic interactions.  相似文献   

4.
For 4-amino-5-chloro-2-methoxy-N-[(2S,4S)-1-ethyl-2-hydroxymethyl-4-pyrrolid inyl]benzamide (TKS159), two polymorphs, forms alpha and beta, were prepared and characterized by means of X-ray powder diffractometry, thermal analysis, infrared spectroscopy and 13C-NMR spectroscopy, both in the solution and solid phases. The X-ray powder diffraction analysis gave different patterns for forms alpha and beta. In the thermogravimetry and differential thermal analysis profiles, form beta exhibited characteristic endo- and exothermic peaks at 112.7 degrees C and 116.2 degrees C, respectively, due to the partial melting-induced phase transition to form alpha without accompanying weight loss, and these were followed by an additional endothermic peak at 138.2 degrees C due to fusion. For form alpha, only an endothermic peak at 137.8 degrees C due to fusion was observed. The IR spectroscopic analyses of forms alpha and beta gave different absorption bands assigned to N-H and O-H stretching, N-H bending, and C=O stretching vibrations. From the data obtained by thermal analysis, form alpha was shown to be thermodynamically more stable than form beta.  相似文献   

5.
Ti(C5H5)2(C8H4S8) (1), Ti(C5Me5)2(C8H4S8) (2), [NMe4][Ti(C5H5)(C8H4S8)2] (3), and [NMe4][Ti(C5Me5)(C8H4S8)2] (4) [C8H4S8(2-) = 2-(4,5-ethylenedithio)-1,3-dithiole-2-ylidene)-1,3-dithiole-4,5- dithiolate(2-)] were prepared by reaction of Ti(C5H5)2Cl2, Ti(C5Me5)2Cl2, Ti(C5H5)Cl3, or Ti(C5Me5)Cl3 with Li2C8H4S8 or [NMe4]2[C8H4S8] in THF. They were oxidized by iodine, the ferrocenium cation, or TCNQ (7,7,8,8-tetracyano-p-quinodimethane) in CH2Cl2 or in acetone to afford one-electron-oxidized and over-one-electron-oxidized species, [Ti(C5H5)2(C8H4S8)].I3, [Ti(C5H5)2(C8H4S8)][PF6], [Ti(C5Me5)2(C8H4S8)].I3, [Ti(C5Me5)2(C8H4S8)][PF6], [Ti(C5H5)(C8H4S8)2].I0.9, [Ti(C5H5)(C8H4S8)2][TCNQ]0.3, [Ti(C5Me5)(C8H4S8)2].I2.4, and [Ti(C5Me5)(C8H4S8)2][TCNQ]0.3, with the C8H4S8 ligand-centered oxidation. They exhibited electrical conductivities of 1.6 x 10(-1) to 7.6 x 10(-4) S cm-1 measured for compacted pellets at room temperature. The crystal structure of 2 was clarified to consist of isolated dimerized units of the molecules through some sulfur-sulfur nonbonded contacts: monoclinic, P2(1)/c, a = 9.534(2) A, b = 18.227(2) A, c = 17.775(2) A, beta = 94.39(1) degrees, Z = 4.  相似文献   

6.
We have observed, via time-of-flight mass spectrometry, 13 chemical species more massive than CS2 produced by shocking liquid CS2 to very high pressure/temperature. The stoichiometry of three of these species is uniquely determined from the 12CS2 experiments; these species are C2S2, C3S2, and C4S2. The stoichiometry of the other 10 structures cannot be uniquely determined from 12CS2 experiments. However, by redoing the experiments using isotopically labeled CS2 (i.e., 13CS2), we determined the stoichiometry of nine of the remaining structures. The nine structures are Sn (n = 3-8) and CS3, C2S5, and C4S6. A structure with mass 297.1 amu was also observed in the 12CS2 experiments but was not detected in the 13CS2 experiments. This structure must be C6S7, C14S4, or C22S; given the low carbon content of the other observed carbon species, it is probably C6S7. The shockwaves to which the CS2 molecules were subjected were produced by the detonation of high mass-density solid explosives. The explosives used were either a plastic bonded form of cyclotetramethlylene tetranitramine or pure hexanitrostilbene. Numerical compressible fluid-mechanical simulations were done to estimate the pressures, temperatures, and time scales of the processes that occurred in the shocked CS2. The results obtained in the present experiments are related to earlier work on CS2's chemical reactivity that used both shockwave methods and static techniques to produce very high pressure.  相似文献   

7.
The new anionic carbon sulfides C6S10(2-) and C12S16(2-) are described and crystallographically characterized. The C12S16(2-) anion consists of two C6S8 units connected by an exceptionally long (2.157(12) A) S-S bond. In solution, C12S16(2-) exists in equilibrium with the radical C6S8(-*). The equilibrium constant for radical formation (293 K, THF) is 1.2 x 10(-4) M, as determined by optical spectroscopy at varying concentrations. Radical formation occurs through scission of the S-S bond. On the basis of variable temperature EPR spectra, the thermodynamic parameters of this process are DeltaH = +51.5 +/- 0.5 kJ x mol(-1) and DeltaS = +110 +/- 3 J x mol(-1) x K(-1). C6S10(2-) is an oxidation product of C3S5(2-) and consists of two C3S5 units connected by an S-S bond. The S-S bond length (2.135(4) A) is long, and the CS-SC torsion angle is unusually acute (52.1 degrees ), which is attributed to an attractive interaction between C3S2 rings. The oxidation of (Me4N)2C3S5 occurs at -0.90 V vs Fc+/Fc in MeCN, being further oxidized at -0.22 V. The similarity of the cyclic voltammogram of (Me4N)2C6S10 to that of (Me4N)2C3S5 indicates that C6S10(2-) is the initial oxidation product of C3S5(2-).  相似文献   

8.
Eight- and 16-membered cyanuric-sulfanuric ring systems of the type Ar2C2N4S2(O)2Ar'2 (3a, Ar = 4-BrC6H4, Ar' = Ph; 3b, Ar = 4-CF3C6H4, Ar' = Ph; 3c, Ar = 4-CF3C6H4, Ar' = 4-CH3C6H4) and Ar4C4N8S4(O)4Ar'4 (4b, Ar = 4-CF3C6H4, Ar' = Ph; 4c, Ar = 4-CH3C6H4, Ar' = Ph; 4d, Ar = 4-CF3C6H4, Ar' = 4-CH3C6H4), respectively, were prepared in good yields by the reaction of the corresponding sulfur(IV) systems with m-chloroperbenzoic acid. The X-ray structures of 3b, 3c.C7H14, 4b.CH2Cl2, 4c, and the S(IV) system Ar4C4N8S4Ar'4 (2c, Ar = 4-CH3C6H4, Ar' = Ph) were determined. Upon oxidation the two oxygen atoms in 3b and 3c.C7H14 adopt endo positions leading to a twist boat conformation for the C2N4S2 ring. The 16-membered C4N8S4 rings in 4b and 4c retain a cradle conformation upon oxidation. The S-N bond distances are ca. 0.06 A shorter in all the S(VI) systems compared to those in the corresponding S(IV) rings. The thermolysis of 3b at ca. 220 degrees C occurs primarily via loss of a sulfanuric group, NS(O)Ph, to give the six-membered ring (4-CF3C6H4)2C2N3S(O)Ph (6). The structure of 6 was confirmed by X-ray crystallography. Crystal data: 2c, triclinic, space group P1 with a = 13.917(2) A, b = 15.610(4) A, c = 13.491(3) A, alpha = 95.77(2) degrees, beta = 114.82(1) degrees, gamma = 76.21(2) degrees, V = 2583(1) A3, and Z = 2; 3b, monoclinic, space group P2(1)/a with a = 7.316(2) A, b = 29.508(5) A, c = 12.910(2) A, beta = 101.30(2) degrees, V = 2733(1) A3, and Z = 4; 3c.C7H14, triclinic, space group P1 with a = 12.849(4) A, b = 12.863(4) A, c = 12.610(7) A, alpha = 110.61(3) degrees, beta = 105.77(3) degrees, gamma = 62.77(2) degrees, V = 1719(1) A3, and Z = 2; 4b.CH2Cl2, triclinic, space group P1 with a = 12.647(3) A, b = 19.137(3) A, c = 12.550(2) A, alpha = 105.765(11) degrees, beta = 93.610(15) degrees, gamma = 88.877(16) degrees, V = 2917.2(9) A3, and Z = 2; 4c, orthorhombic, space group Pba2 with a = 22.657(2) A, b = 10.570(2) A, c = 10.664(3) A, alpha = beta = gamma = 90 degrees, V = 2554(1) A3, and Z = 2; 6, triclinic, space group P1 with a = 7.4667(8) A, b = 11.3406(12) A, c = 13.5470(14) A, alpha = 108.000(2) degrees, beta = 105.796(2) degrees, gamma = 94.300(2) degrees, V = 1033.8(2) A3, and Z = 2.  相似文献   

9.
Brown needle-like crystals of CaEr2S4 were isolated as the major product from a reaction of elements and binary sulfides by a two-step flux technique. CaEr2S4 crystallizes in the orthorhombic space group Pnma with a = 12.845(4), b = 3.862(4), c = 13.001(2) , V = 645.0(7) 3, Z = 4, F(000) = 880, μ(MoKα) = 27.794 mm-1, the final R = 0.0528 and wR = 0.0562 for 1070 observed reflections with I > 3σ(I). The CaEr2S4 structure forms a three-dimensional framework that consists of interconnected tetra-octahedral Er4S18 fragments. Ca2+ cations, in a monocapped trigonal prism geometry, are stuffed in two parallel rows into the one-dimensional channels along the b direction. CaEr2S4 is an infrared-transparent semiconductor with a band gap of 1.81 eV. Magnetic susceptibility measurements over 6~300 K indicate a Curie-Weiss paramagnetic behavior for the phase, with an effective magnetic moment of 9.64(1) μB per Er3+ ion.  相似文献   

10.
Reactions of [M(SR)(3)(PMe(2)Ph)(2)] (M = Ru, Os; R = C(6)F(4)H-4, C(6)F(5)) with CS(2) in acetone afford [Ru(S(2)CSR)(2)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 1; C(6)F(5), 3) and trans-thiolates [Ru(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 2; C(6)F(5), 4) or the isomers trans-thiolates [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 5; C(6)F(5), 7) and trans-thiolate-phosphine [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 6; C(6)F(5), 8) through processes involving CS(2) insertion into M-SR bonds. The ruthenium(III) complexes [Ru(SR)(3)(PMe(2)Ph)(2)] react with CS(2) to give the diamagnetic thiolate-thioxanthato ruthenium(II) and the paramagnetic ruthenium(III) complexes while osmium(III) complexes [Os(SR)(3)(PMe(2)Ph)(2)] react to give the paramagnetic thiolate-thioxanthato osmium(III) isomers. The single-crystal X-ray diffraction studies of 1, 4, 5, and 8 show distorted octahedral structures. (31)P [(1)H] and (19)F NMR studies show that the solution structures of 1 and 3 are consistent with the solid-state structure of 1.  相似文献   

11.
NaOH (0.02-0.3 molar equiv) is an efficient catalyst for the thiolysis reactions of alpha,beta-epoxy ketones with alkyl and aryl thiols in water. Thiolysis of 3,4-epoxyheptan-2-one (1) with thiols 2a-d has been accomplished in mild conditions (30 degrees C and pH 6 or 9) with complete C-alpha-regioselectivity and anti-stereoselectivity, and the corresponding anti-beta-carbonyl-beta-hydroxysulfides 3a-d have been prepared in excellent yields (95-98%). Compounds 3a-d, depending on their nature and pH conditions, have undergone dehydration, C-3 epimerization reaction, and retroaldol condensation. Dehydration of anti-3a-d has been chemoselectively carried out by in situ acidic treatment at 70 degrees C, giving stereoselectively the related (Z)-vinyl sulfides 4 in 89-94% overall yields. Under NaOH-catalyzed thiolysis conditions, cyclic alpha,beta-epoxyketones 6-9 have shown C-alpha attack only and spontaneously dehydrated to furnish the corresponding vinyl sulfides in high yields (90-96%). The reactions of calchone oxide (10) with thiols 2b-d have exclusively resulted in the formation of beta-carbonylsulfides 10b-d (82-93% yield), coming from the nucleophilic attack at the alpha-position and retroaldol condensation. To highlight the synthetic utility of this procedure, one-pot multisteps preparation of vinyl sulfides 7b and 7c, vinyl sulfoxides 12 and 13, and 1,5,6,7-tetrahydro-4H-1,2,3-benzotriazol-4-one (14) starting from 2-cyclohexen-1-one (11) have also been reported.  相似文献   

12.
Ligand-exchange reactions involving octahedral W6S8 clusters and a family of pyridine-based ligands (isonicotinic acid, isonicotinamide, 4-hydroxypyridine, 4-aminopyridine, 4-pyridineacetamide) have been explored with the goal of preparing compounds that crystallize in hydrogen-bonded arrays. Two new compounds, W6S8(4-pyridineacetamide)6.DMF.4-pyridineacetamide (1) and W6S8(4-aminopyridine)6.4DMF (2), were isolated and characterized by single-crystal X-ray diffraction. Both compounds crystallize in the P2(1)/c space group with a = 16.461(1), b = 33.08(2), c = 13.165(10) A, beta = 103.270(15) degrees for 1 and a = 13.8988(5), b = 13.2791(5), c = 15.6293(6) A, beta = 108.5410(10) degrees for 2. Each compound was further characterized by 1H NMR spectroscopy, elemental (CHN) analysis, and thermogravimetric analysis. Examination of the structures shows that 1 forms a three-dimensional hydrogen-bonded network in which each 4-pyridineacetamide ligand interacts with ligands on neighboring clusters or with the free ligand of crystallization. This is the first hydrogen-bonded network formed from W6S8 clusters. In 2, the amino groups act as hydrogen-bond donors toward DMF molecules of crystallization, but an extended array is not formed. In addition, the binding strengths of these pyridine-based ligands to the W6S8 cluster were studied through quantitative 1H NMR studies of ligand-exchange reactions. A qualitative relationship was found between ligand binding strengths and Hammett substituent constants for this group of ligands.  相似文献   

13.
14.
Two new, metal-rich nickel-tin sulfides Ni(6)SnS(2) and Ni(9)Sn(2)S(2) were found by establishing phase relations in the ternary Ni-Sn-S system at 540 degrees C. Their single crystals were prepared by means of chemical vapor transport reactions. Single crystal X-ray diffraction was used for the determination of their crystal structures. Both compounds crystallize in a tetragonal system (I4/mmm, No. 139, Z = 2, a = 3.646(1) A, c = 18.151(8) A for Ni(6)SnS(2), and a = 3.678(1) A, c = 25.527(8) A for Ni(9)Sn(2)S(2)). Their crystal structures represent a new structure type and can be considered as assembled from bimetallic nickel-tin and nickel-sulfide slabs alternating along the crystallographic c axis. DFT band structure calculations showed the bonding within the bimetallic slabs to have a delocalized, multicenter nature, typical for metallic systems, and predominantly classical, pairwise bonding between nickel and sulfur.  相似文献   

15.
Broad band solar or 300--400 nm irradiation (Hg--Xe arc source) of liquid-phase carbon disulfide produces a new carbon--sulfur polymer with the approximate (n = 1.04--1.05) stoichiometry (CS(n))(x). The polymer, from here on called (CS)(x), forms as a approximately 200 nm thick transparent golden membrane as measured by SEM and AFM techniques. IR spectra for this polymer show some similarities with those obtained for the gas-phase photopolymerized (CS(2))(x) and the high-pressure-phase polymer of CS(2), called Bridgman's Black. The observed FT-IR absorptions of (CS)(x) include prominent features at 1431 (s, br), 1298 (m), 1250 (ms), and 1070 cm(-1) (m). In contrast to previous proposals for (CS(2))(x), (13)C labeling and model compound studies of alpha-(C(3)S(5))R(2) and beta-(C(3)S(5))R(2) (R = methyl or benzoyl) suggest that the absorption at 1431 cm(-1) and those at 1298 and 1250 cm(-1) are indicative of carbon--carbon double bonds and carbon--carbon single bonds, respectively. The molecular structure of alpha-(C(3)S(5))(C(O)C(6)H(5))(2), determined at -84 degrees C, belongs to space group P1, with a = 7.486(5) A, b = 13.335(11) A, c = 17.830(13) A, alpha = 105.60(6) degrees, beta = 95.32(6) degrees, gamma = 90.46(6) degrees, Z = 4, V = 1706(2) A(3), R = 0.0785, and R(w) = 0.2323. With use of electron and chemical ionization mass spectrometry, C(4)S(6) and C(6)S(7) were identified as the dominant soluble molecular side-products derived from a putative ethylenedithione (S==C==C==S) precursor. Atomic force microscopy (AFM) provided surface topology information for the thin film (CS)(x) and revealed features that suggested the bulk material is formed from small polymer spheres 20--50 nm in size. Both (CS(2))(x) and (CS)(x) are extensively cross-linked through disulfide linkages and both materials show strong EPR resonances (g > 2.006) indicative of sulfur-centered radicals from incomplete cross-linking. A polymerization mechanism based on the intermediacy of S(2)C=CS(2) is proposed.  相似文献   

16.
The regiospecificity of the 1,4-addition of the recently reported novel alkoxy chlorodisulfides to 2-methyl-1,3-butadiene has been established. Allyl allenethiosulfinates formed by spontaneous [2,3]-sigmatropic rearrangement of the addition products were oxidized at 4 degrees C to the corresponding thiosulfonates. Periodate oxidation at room temperature, preferably in the presence of I2, resulted in oxidative cleavage and cyclization to beta-iodo alpha,beta-unsaturated gamma-sultines. Such sultines, with varying degrees of gamma-alkyl substitution, were also conveniently prepared by reaction of iodine with alkyl allenesulfinates.  相似文献   

17.
Upon ionization of the P4S3I2 molecule with Ag[Al(OR)4], a highly reactive sulfonium cation P4S3I+ is generated (NMR simulated and assigned). At -80 degrees C this cation reacts with additional P4S3I2 to give either an iodophosphonium P4S3I3+ cation (NMR simulated and assigned) and P4S3 or to give several isomers of a metastable compound that is probably P8S3I3+. This mixture decomposes at 0 degrees C to give only three isomers of the spirocyclic P7S6I2+ cage cation (31P NMR simulated and assigned, X-ray of one isomer, IR assigned). The oxidation of the [Ag(P4S3)2]+ complex by I2 also resulted in the formation of P7S6I2+, but with more by-products. The spirocyclic 15-atom cage of P7S6I2+ has no precedent and contains the first phosphonium center bonded only to P and S atoms. This structural element gives the first experimental clue as to how formal charge-bearing elements in the still unknown class of binary P-Ch (Ch = chalcogen) or homopolyatomic P cations may be constructed.  相似文献   

18.
The compound [NH4(NH3)4][B(C6H5)4].NH3 (1) was prepared by the reaction of NaB(C(6)H(5))(4) with a proton-charged ion-exchange resin in liquid ammonia. [NH(4)(NH(3))(4)][Ca(NH(3))(7)]As(3)S(6).2NH(3) (2) and [NH4(NH3)4][Ba(NH3)8]As3S6.NH3 (3) were synthesized by reduction of As(4)S(4) with Ca and Ba in liquid ammonia. All ammoniates were characterized by low-temperature single-crystal X-ray structure analysis. They were found to contain the ammine-ammonium complex with the maximal possible number of coordinating ammonia molecules, the [NH4(NH3)4]+ ion. 1 contains a special dimer, the [(NH4(NH3)4)2(mu-NH3)2]2+ ion, which is formed by two[NH4(NH3)4]+ ions linked by two ammonia molecules. The H(3)N-H...N hydrogen bonds in all three compounds range from 1.82 to 2.20 A (DHA = Donor-H...Acceptor angles: 156-178 degrees). In 2 and 3, additional H(2)N-H...S bonds to the thioanions are observed, ranging between 2.49 and 3.00 A (DHA angles: 120-175 degrees). Two parallel phenyl rings of the [B(C(6)H(5))(4)](-) anion in 1 form a pi...pi hydrogen bond (C...C distance, 3.38 A; DHA angles, 82 degrees), leading to a dimeric [B(C6H5)4]2(2-) ion.  相似文献   

19.
(—)(2R,4R)-2,4-dimesyloxypentane, treated with (i) potassium thiolacetate/DMF (ii) 12N hydrogen chloride/dimethoxymethane/methanol yields (—)(4S,6S)-4,6-dimethyl-1,3-oxathiane and (—)(4S,6S)-4,6-dimethyl-1,3-dithiane. The mechanism of the formation of the oxathiane is discussed.  相似文献   

20.
王庆华  翁文  郭国聪 《结构化学》2004,23(8):932-935
用 HgI2 和 4,5-亚乙基二硫杂-1,3-二硫杂-2-硫酮 (C5H4S5)反应,合成一种二核汞配合物[Hg(C5H4S5)I2]2 1。X 射线衍射结果表明,晶体属于单斜晶系,C2/c 空间群,晶胞参数 a =21.6847(1),b = 8.5125(4),c = 15.6699(8),a=112.7850(1)°,V=2666.8(2) ?3。Mr = 1357.54,Z = 4,Dx = 3.381 g/cm3,ì = 16.913 cm–1,F(000) = 2400,R=0.0639,wR=0.1711,S=1.052。配合物 1 具有二聚体结构,2 个汞原子通过 2 个碘原子桥联,形成 1 个 Hg2I2菱形平面,汞原子周围的配位是四面体结构,通过分子间的硫…硫作用和碘…硫作用,形成准二维超分子网络。 S S S H g I I S S S S I I H g S  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号