首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Discrete Mathematics》2022,345(11):113058
Given an undirected graph G=(V,E), a conflict-free coloring with respect to open neighborhoods (CFON coloring) is a vertex coloring such that every vertex has a uniquely colored vertex in its open neighborhood. The minimum number of colors required for such a coloring is the CFON chromatic number of G, denoted by χON(G).In previous work [WG 2020], we showed the upper bound χON(G)dc(G)+3, where dc(G) denotes the distance to cluster parameter of G. In this paper, we obtain the improved upper bound of χON(G)dc(G)+1. We also exhibit a family of graphs for which χON(G)>dc(G), thereby demonstrating that our upper bound is tight.  相似文献   

2.
《Discrete Mathematics》2022,345(1):112631
For a graph G=(V,E), a total ordering L on V, and a vertex vV, let Wcol2[G,L,v] be the set of vertices wV for which there is a path from v to w whose length is 0, 1 or 2 and whose L-least vertex is w. The weak 2-coloring number wcol2(G) of G is the least k such that there is a total ordering L on V with |Wcol2[G,L,v]|k for all vertices vV. We improve the known upper bound on the weak 2-coloring number of planar graphs from 28 to 23. As the weak 2-coloring number is the best known upper bound on the star list chromatic number of planar graphs, this bound is also improved.  相似文献   

3.
《Discrete Mathematics》2022,345(10):112998
Let G be a graph and let f be a positive integer-valued function on V(G). In this paper, we show that if for all S?V(G), ω(G?S)<vS(f(v)?2)+2+ω(G[S]), then G has a spanning tree T containing an arbitrary given matching such that for each vertex v, dT(v)f(v), where ω(G?S) denotes the number of components of G?S and ω(G[S]) denotes the number of components of the induced subgraph G[S] with the vertex set S. This is an improvement of several results. Next, we prove that if for all S?V(G), ω(G?S)vS(f(v)?1)+1, then G admits a spanning closed walk passing through the edges of an arbitrary given matching meeting each vertex v at most f(v) times. This result solves a long-standing conjecture due to Jackson and Wormald (1990).  相似文献   

4.
5.
6.
7.
8.
9.
《Discrete Mathematics》2022,345(7):112866
Let G be a graph with n vertices. A path decomposition of G is a set of edge-disjoint paths containing all the edges of G. Let p(G) denote the minimum number of paths needed in a path decomposition of G. Gallai Conjecture asserts that if G is connected, then p(G)?n/2?. If G is allowed to be disconnected, then the upper bound ?34n? for p(G) was obtained by Donald [7], which was improved to ?23n? independently by Dean and Kouider [6] and Yan [14]. For graphs consisting of vertex-disjoint triangles, ?23n? is reached and so this bound is tight. If triangles are forbidden in G, then p(G)?g+12gn? can be derived from the result of Harding and McGuinness [11], where g denotes the girth of G. In this paper, we also focus on triangle-free graphs and prove that p(G)?3n/5?, which improves the above result with g=4.  相似文献   

10.
11.
A graph G is called a pseudo-core if every endomorphism of G is either an automorphism or a colouring. A graph G is a core if every endomorphism of G is an automorphism. Let Fq be the finite field with q elements where q is a power of an odd prime number. The quadratic forms graph, denoted by Quad(n,q) where n2, has all quadratic forms on Fqn as vertices and two vertices f and g are adjacent whenever rk(fg)=1 or 2. We prove that every Quad(n,q) is a pseudo-core. Further, when n is even, Quad(n,q) is a core. When n is odd, Quad(n,q) is not a core. On the other hand, we completely determine the independence number of Quad(n,q).  相似文献   

12.
《Discrete Mathematics》2022,345(8):112903
Graphs considered in this paper are finite, undirected and loopless, but we allow multiple edges. The point partition number χt(G) is the least integer k for which G admits a coloring with k colors such that each color class induces a (t?1)-degenerate subgraph of G. So χ1 is the chromatic number and χ2 is the point arboricity. The point partition number χt with t1 was introduced by Lick and White. A graph G is called χt-critical if every proper subgraph H of G satisfies χt(H)<χt(G). In this paper we prove that if G is a χt-critical graph whose order satisfies |G|2χt(G)?2, then G can be obtained from two non-empty disjoint subgraphs G1 and G2 by adding t edges between any pair u,v of vertices with uV(G1) and vV(G2). Based on this result we establish the minimum number of edges possible in a χt-critical graph G of order n and with χt(G)=k, provided that n2k?1 and t is even. For t=1 the corresponding two results were obtained in 1963 by Tibor Gallai.  相似文献   

13.
14.
《Discrete Mathematics》2022,345(8):112902
For a simple graph G, denote by n, Δ(G), and χ(G) its order, maximum degree, and chromatic index, respectively. A graph G is edge-chromatic critical if χ(G)=Δ(G)+1 and χ(H)<χ(G) for every proper subgraph H of G. Let G be an n-vertex connected regular class 1 graph, and let G? be obtained from G by splitting one vertex of G into two vertices. Hilton and Zhao in 1997 conjectured that G? must be edge-chromatic critical if Δ(G)>n/3, and they verified this when Δ(G)n2(7?1)0.82n. In this paper, we prove it for Δ(G)0.75n.  相似文献   

15.
16.
17.
18.
《Discrete Mathematics》2022,345(12):113083
Let G be a graph, ν(G) the order of G, κ(G) the connectivity of G and k a positive integer such that k(ν(G)?2)/2. Then G is said to be k-extendable if it has a matching of size k and every matching of size k extends to a perfect matching of G. A Hamiltonian path of a graph G is a spanning path of G. A bipartite graph G with vertex sets V1 and V2 is defined to be Hamiltonian-laceable if such that |V1|=|V2| and for every pair of vertices pV1 and qV2, there exists a Hamiltonian path in G with endpoints p and q, or |V1|=|V2|+1 and for every pair of vertices p,qV1,pq, there exists a Hamiltonian path in G with endpoints p and q. Let G be a bipartite graph with bipartition (X,Y). Define bn(G) to be a maximum integer such that 0bn(G)<min{|X|,|Y|} and (1) for each non-empty subset S of X, if |S||X|?bn(G), then |N(S)||S|+bn(G), and if |X|?bn(G)<|S||X|, then N(S)=Y; and (2) for each non-empty subset S of Y, if |S||Y|?bn(G), then |N(S)||S|+bn(G), and if |Y|?bn(G)<|S||Y|, then N(S)=X; and (3) bn(G)=0 if there is no non-negative integer satisfying (1) and (2).Let G be a bipartite graph with bipartition (X,Y) such that |X|=|Y| and bn(G)>0. In this paper, we show that if ν(G)2κ(G)+4bn(G)?4, then G is Hamiltonian-laceable; or if ν(G)>6bn(G)?2, then for every pair of vertices xX and yY, there is an (x,y)-path P in G with |V(P)|6bn(G)?2. We show some of its corollaries in k-extendable, bipartite graphs and a conjecture in k-extendable graphs.  相似文献   

19.
《Discrete Mathematics》2022,345(12):113079
A set D of vertices of a graph G=(V,E) is irredundant if each non-isolated vertex of G[D] has a neighbour in V?D that is not adjacent to any other vertex in D. The upper irredundance number IR(G) is the largest cardinality of an irredundant set of G; an IR(G)-set is an irredundant set of cardinality IR(G).The IR-graph of G has the IR(G)-sets as vertex set, and sets D and D are adjacent if and only if D can be obtained from D by exchanging a single vertex of D for an adjacent vertex in D. An IR-tree is an IR-graph that is a tree. We characterize IR-trees of diameter 3 by showing that these graphs are precisely the double stars S(2n,2n), i.e., trees obtained by joining the central vertices of two disjoint stars K1,2n.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号