首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A torsional static and free vibration analysis of the functionally graded nanotube(FGNT) composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model. The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle, and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel. Several nom...  相似文献   

2.
A theory of nonlocal elasticity of bi-Helmholtz type is studied. We employ Eringen’s model of nonlocal elasticity, with bi-Helmholtz type kernels, to study dispersion relations, screw and edge dislocations. The nonlocal kernels are derived analytically as Green functions of partial differential equations of fourth order. This continuum model of nonlocal elasticity involves two material length scales which may be derived from atomistics. The new nonlocal kernels are nonsingular in one-, two- and three-dimensions. Furthermore, the nonlocal elasticity of bi-Helmholtz type improves the one of Helmholtz type by predicting a dispersion relationship with zero group velocity at the end of the first Brillouin zone. New solutions for the stresses and strain energy of screw and edge dislocations are found.  相似文献   

3.
Due to the conflict between equilibrium and constitutive requirements,Eringen's strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest. As an alternative, the stress-driven model has been recently developed. In this paper, for higher-order shear deformation beams, the ill-posed issue(i.e., excessive mandatory boundary conditions(BCs) cannot be met simultaneously)exists not only in strain-driven nonlocal models but also in stress-driven ones. The well-posedness of both the strain-and stress-driven two-phase nonlocal(TPN-Strain D and TPN-Stress D) models is pertinently evidenced by formulating the static bending of curved beams made of functionally graded(FG) materials. The two-phase nonlocal integral constitutive relation is equivalent to a differential law equipped with two restriction conditions. By using the generalized differential quadrature method(GDQM),the coupling governing equations are solved numerically. The results show that the two-phase models can predict consistent scale-effects under different supported and loading conditions.  相似文献   

4.
Previous studies have shown that Eringen's differential nonlocal model would lead to the ill-posed mathematical formulation for axisymmetric bending of circular microplates. Based on the nonlocal integral models along the radial and circumferential directions, we propose nonlocal integral polar models in this work. The proposed strainand stress-driven two-phase nonlocal integral polar models are applied to model the axisymmetric bending of circular microplates. The governing differential equations and boundary conditions (BCs) as well as constitutive constraints are deduced. It is found that the purely strain-driven nonlocal integral polar model turns to a traditional nonlocal differential polar model if the constitutive constraints are neglected. Meanwhile, the purely strain-and stress-driven nonlocal integral polar models are ill-posed, because the total number of the differential orders of the governing equations is less than that of the BCs plus constitutive constraints. Several nominal variables are introduced to simplify the mathematical expression, and the general differential quadrature method (GDQM) is applied to obtain the numerical solutions. The results from the current models (CMs) are compared with the data in the literature. It is clearly established that the consistent softening and toughening effects can be obtained for the strain-and stress-driven local/nonlocal integral polar models, respectively. The proposed two-phase local/nonlocal integral polar models (TPNIPMs) may provide an e-cient method to design and optimize the plate-like structures for microelectro-mechanical systems.  相似文献   

5.
The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed–fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.  相似文献   

6.
To control localization phenomena exhibited by strain softening constitutive relations, several issues have been proposed by various authors, based on spatial regularization. In this paper, we define a variational framework, thought to encompass some of these issues: the constitutive relations are written at the structural scale and become minimization problems. Such a framework is not only well-suited to the mathematical study of the boundary value problem, but also leads in a natural way to an efficient numerical algorithm. The formulation is first presented, then applied to several classes of models existing in the literature : a homogenization-based constitutive relation, a porosity model and gradient plasticity. Besides the higher degree of generality confered by the formulation, it will be shown that several properties can be obtained for these models.  相似文献   

7.
IntroductionIntheframeworkofconventionalplasticity ,materialinstabilityisoneoftheprincipalfactorsthatresultinginthestrainlocalizationphenomenon .Byusingtheterminology‘homogenized’ ,itisreferredtothefactthatinitialflawsandboundaryconditionsnecessarilyinduceanon_homogeneousstressstateinaspecimenduringtesting .Inparticularintheprocessofprogressivefailure ,theflawsandlocalstressconcentrationwillcausestronglyinhomogeneousdeformationofthespecimen[1,2 ].Asthedeformation_inducedfracture/damagephenom…  相似文献   

8.
The two-fluid model is widely adopted in simulations of dense gas-particle flows in engineering facili- ties. Present two-phase turbulence models for two-fluid modeling are isotropic. However, turbulence in actual gas-particle flows is not isotropic. Moreover, in these models the two-phase velocity correlation is closed using dimensional analysis, leading to discrepancies between the numerical results, theoretical analysis and experiments. To rectify this problem, some two-phase turbulence models were proposed by the authors and are applied to simulate dense gas-particle flows in downers, risers, and horizontal channels; Experimental results validate the simulation results. Among these models the USM-O and the two-scale USM models are shown to give a better account of both anisotropic particle turbulence and particle-particle collision using the transport equation model for the two-phase velocity correlation.  相似文献   

9.
Investigations of wave and vibration properties of single- or multi-walled carbon nanotubes based on nonlocal beam models have been reported recently. However, there are numerous inconsistencies in the handling of the governing equations, applied forces, and boundary conditions based on some of the reported nonlocal beam models. In this paper, the consistent equations of motion for the nonlocal Euler and Timoshenko beam models are provided, and some issues on the nonlocal beam theories are discussed. The models are then applied to the studies of wave properties of single- and double-walled nanotubes. The wave and vibration properties of the nanotubes based on the presented nonlocal beam equations are studied, and scale effects are discussed.  相似文献   

10.
In this paper, the free axial vibration of single walled carbon nanorod embedded in an elastic medium is investigated by the use of Rayleigh model. The stress gradient model introduced by Eringen is used to formulate the governing equations. Explicit expressions are derived for eigenfrequencies of fixed-fixed and fixed-free boundary conditions.  相似文献   

11.
Wang  Lan  Li  Nan  Xie  Ming  Wu  Lifeng 《Nonlinear dynamics》2023,111(9):8571-8590

For many applications, small-sample time series prediction based on grey forecasting models has become indispensable. Many algorithms have been developed recently to make them effective. Each of these methods has a specialized application depending on the properties of the time series that need to be inferred. In order to develop a generalized nonlinear multivariable grey model with higher compatibility and generalization performance, we realize the nonlinearization of traditional GM(1,N), and we call it NGM(1,N). The unidentified nonlinear function that maps the data into a better representational space is present in both the NGM(1,N) and its response function. The original optimization problem with linear equality constraints is established in terms of parameter estimation for the NGM(1,N), and two different approaches are taken to solve it. The former is the Lagrange multiplier method, which converts the optimization problem into a linear system to be solved; and the latter is the standard dualization method utilizing Lagrange multipliers, that uses a flexible estimation equation for the development coefficient. As the size of the training data increases, the estimation results of the potential development coefficient get richer and the final estimation results using the average value are more reliable. The kernel function expresses the dot product of two unidentified nonlinear functions during the solving process, greatly lowering the computational complexity of nonlinear functions. Three numerical examples show that the LDNGM(1,N) outperforms the other multivariate grey models compared in terms of generalization performance. The duality theory and framework with kernel learning are instructive for further research around multivariate grey models to follow.

  相似文献   

12.
The regularized integrodifferential equation for the first kind of Fredholm integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-demensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given. Project supported by the National Natural Science Foundation, of China  相似文献   

13.
We consider a linear viscoelastic material whose relaxation function may exhibit an initial singularity. We show that the Laplace transform method is still applicable in order to study existence, uniqueness and asymptotic behaviour of the solution to the dynamic problem. In order to provide these results, we impose on the relaxation function only restrictions deriving from Thermodynamics. Moreover, by using energy estimates, we establish a stability theorem. Finally, for a class of singular kernels, we obtain a regularity result which ensures the asymptotic stability of the solution.This work is supported by G.N.F.M. of C.N.R. and by M.U.R.S.T. 40% and 60% projects.  相似文献   

14.
15.
16.
A new phase-averaging method, denoted as Fourier averaging, is presented for the investigation of periodic flows. In such flows, the moments of velocity, as estimated from a small number of samples, show fluctuations in their phasewise development. In previous methods these fluctuations are reduced by calculating moments from large phase intervals. Fourier averaging, in contrast, neglects high-frequency fluctuations and assumes that they are of no physical relevance. This method supplies additional information on amplitudes and phase angles of discrete frequencies, which may then be used for visualizations of flow fields at any desired phase increment. The Fourier averaging method was verified empirically by LDA measurements and compared to other methods. It is shown that the results obtained by Fourier averaging are more accurate than for previously known methods. Received: 15 June 1998/Accepted: 15 April 1999  相似文献   

17.
A nonlinear degenerate parabolic equation with nonlocal source was considered. It was shown that under certain assumptions the solution of the equation blows up in finite time and the set of blowup points is the whole region. The integral method is used to investigate the blowup properties of the solution.  相似文献   

18.
Solid–liquid two-phase flow in a finite Reynolds number range (2 < Re < 12), transporting neutrally-buoyant microspheres with diameters of 6, 10, and 16 μm through a 260-μm microcapillary, is investigated. A standard microparticle-tracking velocimetry (μ-PTV) that consists of a double-pulsed Nd:YAG laser, an epi-fluorescent microscope, and a cooled-CCD camera is used to examine the flow. The solid particles are visualized in view of their spatial distributions. We observe a strong radial migration of the particles across the flow streamlines at substantially small Re. The degree of particle migration is presented in terms of probability density function. Some applications based on this radial migration phenomena are discussed in conjunction with particle separation/concentration in microfluidic devices, where the spatial distribution of particles is of great importance. In doing so, we propose a particle-trajectory function to empirically construct the spatial distribution of solid particles, which is well correlated with our experimental data. It is believed that this function provides a simple method for estimating the spatial distribution of particles undergoing radial migration in solid–liquid two-phase flows.  相似文献   

19.
I.IntroductionTheinverseproblemofdynamicsisoneoftheimportantsubjectsinmechanics.In1977,Szebehelysetforthaninverseproblemforthedeterminationofthet'orcefunctiontoamaterialpointintheplanefromparametricfamilyoftrajectories,andobtainedalinearfirstorderpartialdifferentialequationfortheforcefunction.Later,Erdil'l,MellsandPirast=l,MellsandBorgherol'l,BoilsandMertnsl4]extendedSzebehely'sproblemtoboththreeandndimensionalholonomicsystem.Recently,theauthorandProfessorMetFengxiangl'1studiedtheSzebehe…  相似文献   

20.
This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamline model. The mathematical model of the vertical two-dimensional flow or oil-water for a horizontal well in a medium with double-porosity is established, and whose accurate solutions are obtained by using the characteristic method. The saturation distributions in the fractured system and the matrix system as well as the formula of the time of water free production are presented. All these results provide a theoretical basis and a computing method for oil displacement by edge water from naturally fractured reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号