首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The global uniform exponential stability of switched positive linear impulsive systems with time-varying delays and all unstable subsystems is studied in this paper, which includes two types of distributed time-varying delays and discrete time-varying delays. Switching behaviors dominating the switched systems can be either stabilizing and destabilizing in the new designed switching sequence. We design new linear programming algorithm process to find the feasible ratio of stabilizing switching behaviors, which can be compensated by unstable subsystems, destabilizing switching behaviors, and impulses. Speci cally, we add a kind of nonnegative impulses which is consistent with the switching behaviors for the systems. Employing a multiple co-positive Lyapunov-Krasovskii functional, we present several new sufficient stability criteria and design new switching sequence. Then, we apply the obtained stability criteria to the exponential consensus of linear delayed multi-agent systems, and obtain the new exponential consensus criteria. Three simulations are provided to demonstrate the proposed stability criteria.  相似文献   

2.
《随机分析与应用》2013,31(2):279-293
A class of nonlinear systems with a time-varying delay is considered.The delay is modeled by a continuous-time Markov process with a finite number of states. Systems of this type may arise in real-time control applications. Employing a “delay-averaging” approach we demonstrate how certain mean-square stochastic stability conditions can be derived in terms of transition functions of the Markov process and stability properties of a system with a constant delay.  相似文献   

3.
In this paper, we studied the stabilization of nonlinear regularized Prabhakar fractional dynamical systems without and with time delay. We establish a Lyapunov stabiliy theorem for these systems and study the asymptotic stability of these systems without design a positive definite function V (without considering the fractional derivative of function V is negative). We design a linear feedback controller to control and stabilize the nonautonomous and autonomous chaotic regularized Prabhakar fractional dynamical systems without and with time delay. By means of the Lyapunov stability, we obtain the control parameters for these type of systems. We further present a numerical method to solve and analyze regularized Prabhakar fractional systems. Furthermore, by employing numerical simulation, we reveal chaotic attractors and asymptotic stability behaviors for four systems to illustrate the presented theorem.  相似文献   

4.
Nowadays it is important to investigate and develop solar water heating systems as an environmentally friendly technology. For this reason we introduce a physically-based nonlinear mathematical model that applies to a wide range of solar heating systems. In commercial solar heating systems not all state variables are monitored by direct measurements, since some of them may be technically difficult or expensive to measure. For a better monitoring and more efficient control of the system it may be useful to estimate the unmeasured state variables.As a novelty, we apply a global nonlinear state observer to a solar domestic water heating system. The state observer has been established relatively recently in the field of control theory. The state observer we worked out enables us to estimate the unmeasured state variables in real-time. This observer is global in the sense that it works starting from any initial state. A further contribution of this work is a rather general algorithm for the practical application of the real-time estimation process, and we also give bounds of the estimation error and a practical method to decrease this error.Comparing calculated and measured values for a real particular solar heating system, we justify the usability of the state observer and the estimation process.On the basis of measured data, we show that the nonlinear mathematical model corresponding to the applied nonlinear observer is more accurate than the linear model corresponding to the classical linear Luenberger-type observer, so it is reasonable to apply the nonlinear observer.  相似文献   

5.
This paper is a geometric study of the local observer design for nonlinear systems. First, we obtain necessary and sufficient conditions for local exponential observers for Lyaupnov stable nonlinear systems. We also show that the definition of local exponential observers can be considerably weakened for neutrally stable nonlinear systems. As an application of our local observer design, we consider a class of nonlinear systems with an input generator (exosystem) and show that for this class of nonlinear systems, under some stability assumptions, the existence of local exponential observers in the presence of inputs implies and is implied by the existence of local exponential observers in the absence of inputs.  相似文献   

6.
This paper is a geometric study of the observer design for discrete-time nonlinear systems. First, we obtain necessary and sufficient conditions for local exponential observers for Lyaupnov stable discrete-time nonlinear systems. We also show that the definition of local exponential observers can be considerably weakened for neutrally stable discrete-time nonlinear systems. As an application of our local observer design, we consider a class of discrete-time nonlinear systems with an input generator (exosystem) and show that for this class of nonlinear systems, under some stability assumptions, the existence of local exponential observers in the presence of inputs implies and is implied by the existence of local exponential observers in the absence of inputs.  相似文献   

7.
Recurrence analysis is an effective tool to characterize and quantify the dynamics of complex systems, e.g., laminar, divergent or nonlinear transition behaviors. However, recurrence computation is highly expensive as the size of time series increases. Few, if any, previous approaches have been capable of quantifying the recurrence properties from a long-term time series, while which is often collected in the real-time monitoring of complex systems. This paper presents a novel multiscale framework to explore recurrence dynamics in complex systems and resolve computational issues for a large-scale dataset. As opposed to the traditional single-scale recurrence analysis, we characterize and quantify recurrence dynamics in multiple wavelet scales, which captures not only nonlinear but also nonstationary behaviors in a long-term time series. The proposed multiscale recurrence approach was utilized to identify heart failure subjects from the 24-h time series of heart rate variability (HRV). It was shown to identify the conditions of congestive heart failure with an average sensitivity of 92.1% and specificity of 94.7%. The proposed multiscale recurrence framework can be potentially extended to other nonlinear dynamic methods that are computationally expensive for large-scale datasets.  相似文献   

8.
Chilled water systems used in the industry and on board ships are critical for safe and reliable operation. It is hence important to understand the fundamental physics of these systems. This paper focuses in particular on a critical part of the automation system, namely, actuators and valves that are used in so-called “smart valve” systems. The system is strongly nonlinear, and necessitates a nonlinear dynamic analysis to be able to predict all critical phenomena that affect effective operation and efficient design. The derived mathematical model includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a broad parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses; this is characterized using Lyapunov exponents and power spectra. Knowledge and avoidance of these dangerous regimes is necessary for successful and safe operation.  相似文献   

9.
In this paper, we develop a mathematical tool that can be used to state necessary conditions of asymptotic stability of isolated stationary solutions of a class of unilateral dynamical systems. More precisely, nonlinear evolution variational inequalities are considered. Instability criteria are also given. Applications can be found in mechanics or electrical circuits.  相似文献   

10.
Vector Lyapunov theory has been developed to weaken the hypothesis of standard Lyapunov theory in order to enlarge the class of Lyapunov functions that can be used for analyzing system stability. In this paper, we provide generalizations to the recent extensions of vector Lyapunov theory for continuous-time systems to address stability and control design of impulsive dynamical systems via vector Lyapunov functions. Specifically, we provide a generalized comparison principle involving hybrid comparison dynamics that are dependent on the comparison system states as well as the nonlinear impulsive dynamical system states. Furthermore, we develop stability results for impulsive dynamical systems that involve vector Lyapunov functions and hybrid comparison inequalities. Based on these results, we show that partial stability for state-dependent impulsive dynamical systems can be addressed via vector Lyapunov functions. Furthermore, we extend the recently developed notion of control vector Lyapunov functions to impulsive dynamical systems. Using control vector Lyapunov functions, we construct a universal hybrid decentralized feedback stabilizer for a decentralized affine in the control nonlinear impulsive dynamical system that possesses guaranteed gain and sector margins in each decentralized input channel. These results are then used to develop hybrid decentralized controllers for large-scale impulsive dynamical systems with robustness guarantees against full modeling and input uncertainty.  相似文献   

11.
Some nonlinear systems can be approximated by switching bilinear systems. In this paper, we proposed a method to design state-based stabilizing controller for switching bilinear systems. Based on the similarity between switching bilinear systems and switching linear systems, corresponding switching linear systems are obtained for switching bilinear systems by applying state-based feedback control laws. Instead, we consider asymptotically stabilizing the corresponding switching linear system through solving a number of relaxed LMI conditions. Stabilizing controllers for switching bilinear systems can be derived based on the results of the corresponding switching linear systems. The stability of the controller is proved step by step through the decreasing of the multiple Lyapunov functions along the state trajectory. The effectiveness of the method is demonstrated by both a theoretical example and an example of urban traffic network with traffic signals.  相似文献   

12.
This paper presents a hybrid control method that controls to unstable equilibria of nonlinear systems by taking advantage of systems’ free dynamics. The approach uses a stable manifold tracking objective in a computationally efficient, optimization-based switching control design. Resulting nonlinear controllers are closed-loop and can be computed in real-time. Our method is validated for the cart–pendulum and the pendubot inversion problems. Results show the proposed approach conserves control effort compared to tracking the desired equilibrium directly. Moreover, the method avoids parameter tuning and reduces sensitivity to initial conditions. The resulting feedback map for the cart–pendulum has a switching structure similar to existing energy based swing-up strategies. We use the Lyapunov function from these prior works to numerically verify local stability for our feedback map. However, unlike the energy based swing-up strategies, our approach does not rely on pre-derived, system-specific switching controllers. We use hybrid optimization to automate switching control synthesis on-line for nonlinear systems.  相似文献   

13.
The differential geometry approach for exact input-output linearizable nonlinear systems usually results in a complicated nonlinear controller that is difficult to implement. To overcome this difficulty, we propose to approximate the nonlinear controller by a canonical piecewise linear expression within an allowable error bound. This design procedure can reduce a tremendous amount of computation in the design and the synthesis. The resulting controller turns out to be fairly simple in general and can achieve many performance specifications. Some sufficient conditions for guaranteeing the closed-loop system stability using this controller design method is derived in the present paper. An application to a chemical reactor system is also briefly discussed.  相似文献   

14.
15.
Recently, two-component systems of nonlinear Schrödinger equations with trap potentials have been well-known to describe a binary mixture of Bose-Einstein condensates called a double condensate. In a double condensate, the locations of spikes can be influenced by the interspecies scattering length and trap potentials so the interaction of spikes becomes complicated, and the locations of spikes are difficult to be determined. Here we study spikes of a double condensate by analyzing least energy (ground state) solutions of two-component systems of nonlinear Schrödinger equations with trap potentials. Our mathematical arguments may prove how trap potentials and the interspecies scattering length affect the locations of spikes. We use Nehari's manifold to construct least energy solutions and derive their asymptotic behaviors by some techniques of singular perturbation problems.  相似文献   

16.
Systems of equations with block-angular structure have applications in evolution problems coming from physics, engineering and economy. Many times, these systems are time-stage formulations of mathematical models that consist of mathematical programming problems, complementarity, or other equilibrium problems, giving rise to nonlinear and nonsmooth equations. The final versions of these dynamic models are nonsmooth systems with block-angular structure. If the number of state variables and equations is large, it is sensible to adopt an inexact-Newton strategy for solving this type of systems. In this paper we define two inexact-Newton algorithms for semismooth block-angular systems and we prove local and superlinear convergence.  相似文献   

17.
In this paper, we investigate a two-degrees-of-freedom nonlinear quarter-car model with time-delayed feedback control. It is well known that a time delay has destabilizing effects in mathematical models. However, delays are not necessarily destabilizing. In this work we explore a system where a time delay can be both stabilizing and destabilizing. Using the generalized Sturm criterion, the critical control gain for the delay-independent stability region and critical time delays for stability switches are derived. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo stability switches with the variation of the time delay. These stability switches correspond to Hopf bifurcations that occur when the time delays cross critical values. Properties of Hopf bifurcation such as direction and stability of bifurcating periodic solutions are determined by using the normal form theory and centre manifold theorem. Numerical simulations are provided to support the theoretical analysis. The critical conditions can provide a theoretical guidance for the design of vehicles with significant reduction of vibration in order to increase passengers ride comfort.  相似文献   

18.
Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as designing for abstraction. In this paper, we draw on detailed design experiments from our research on children’s understanding about chance and distribution to re-present this work as a case study in designing for abstraction. Through the case study, we elaborate a number of design heuristics that we claim are also identifiable in the broader literature on designing for mathematical abstraction. Our previous work on the micro-evolution of mathematical knowledge indicated that new mathematical abstractions are routinely forged in activity with available tools and representations, coordinated with relatively na?ve unstructured knowledge. In this paper, we identify the role of design in steering the micro-evolution of knowledge towards the focus of the designer’s aspirations. A significant finding from the current analysis is the identification of a heuristic in designing for abstraction that requires the intentional blurring of the key mathematical concepts with the tools whose use might foster the construction of that abstraction. It is commonly recognized that meaningful design constructs emerge from careful analysis of children’s activity in relation to the designer’s own framework for mathematical abstraction. The case study in this paper emphasizes the insufficiency of such a model for the relationship between epistemology and design. In fact, the case study characterises the dialectic relationship between epistemological analysis and design, in which the theoretical foundations of designing for abstraction and for the micro-evolution of mathematical knowledge can co-emerge.  相似文献   

19.
In this paper, we study the global dynamics of a class of mathematical epidemiological models formulated by systems of differential equations. These models involve both human population and environmental component(s) and constitute high-dimensional nonlinear autonomous systems, for which the global asymptotic stability of the endemic equilibria has been a major challenge in analyzing the dynamics. By incorporating the theory of Volterra–Lyapunov stable matrices into the classical method of Lyapunov functions, we present an approach for global stability analysis and obtain new results on some three- and four-dimensional model systems. In addition, we conduct numerical simulation to verify the analytical results.  相似文献   

20.
We consider nonlinear systems of differential-difference equations with delays that provide mathematical models for artificial complete genetic networks. We study problems of the existence and stability of special periodic motions referred to as two-cluster synchronization modes in these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号