首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Comptes Rendus Physique》2013,14(8):712-724
We review the physics of the Bose–Hubbard model with disorder in the chemical potential focusing on recently published analytical arguments in combination with quantum Monte Carlo simulations. Apart from the superfluid and Mott insulator phases that can occur in this system without disorder, disorder allows for an additional phase, called the Bose glass phase. The topology of the phase diagram is subject to strong theorems proving that the Bose Glass phase must intervene between the superfluid and the Mott insulator and implying a Griffiths transition between the Mott insulator and the Bose glass. The full phase diagrams in 3d and 2d are discussed, and we zoom in on the insensitivity of the transition line between the superfluid and the Bose glass in the close vicinity of the tip of the Mott insulator lobe. We briefly comment on the established and remaining questions in the 1d case, and give a short overview of numerical work on related models.  相似文献   

2.
We discuss transport and localization properties on the insulating side of the disorder dominated superconductor‐insulator transition, described in terms of the dirty boson model. Analyzing the spectral properties of the interacting bosons in the absence of phonons, we argue that the Bose glass phase admits three distinct regimes. For strongest disorder the boson system is a fully localized, perfect insulator at any temperature. At smaller disorder, only the low temperature phase exhibits perfect insulation while delocalization takes place above a finite temperature. We argue that a third phase must intervene between these perfect insulators and the superconductor. This conducting Bose glass phase is characterized by a mobility edge in the many body spectrum, located at finite energy above the ground state. In this insulating regime purely electronically activated transport occurs, with a conductivity following an Arrhenius law at asymptotically low temperatures, while a tendency to superactivation is predicted at higher T. These predictions are in good agreement with recent transport experiments in highly disordered films of superconducting materials.  相似文献   

3.
《Comptes Rendus Physique》2013,14(8):725-739
This brief review introduces the method and application of real-space renormalization group to strongly disordered quantum systems. The focus is on recent applications of the strong disorder renormalization group to the physics of disordered-boson systems and the superfluid–insulator transition in one dimension. The fact that there is also a well-understood weak disorder theory for this problem allows us to illustrate what aspects of the physics change at strong disorder. In particular, the strong disorder RG analysis suggests that the transitions at weak disorder and strong disorder belong to distinct universality classes, but this question remains under debate and is not fully resolved to date. Further applications of the strong disorder renormalization group to higher-dimensional Bose systems and to bosons coupled to dissipation are also briefly reviewed.  相似文献   

4.
采用截断求和法和半经典近似,以二维理想玻色气体为例,研究了磁场和简谐势阱中低维荷电自旋-1玻色子的相变及磁性质.结果表明,电荷-磁场和自旋-磁场作用的竞争导致玻色-爱因斯坦凝聚临界温度随磁场的增大先略微上升后缓慢下降.截断求和法能够有效的改进半经典近似的不足.最后,讨论了磁化强度由抗磁性到顺磁性的转变及自旋因子临界值随磁场和温度的变化.  相似文献   

5.
We investigate the physics of dipolar bosons in a two-dimensional optical lattice. It is known that due to the long-range character of dipole-dipole interaction, the ground state phase diagram of a gas of dipolar bosons in an optical lattice presents novel quantum phases, like checkerboard and supersolid phases. In this Letter, we consider the properties of the system beyond its ground state, finding that it is characterized by a multitude of almost degenerate metastable states, often competing with the ground state. This makes dipolar bosons in a lattice similar to a disordered system and opens possibilities of using them as quantum memories.  相似文献   

6.
We study the nature of the superfluid-insulator quantum phase transition in a one-dimensional system of lattice bosons with off-diagonal disorder in the limit of a large integer filling factor. Monte Carlo simulations of two strongly disordered models show that the universality class of the transition in question is the same as that of the superfluid-Mott-insulator transition in a pure system. This result can be explained by disorder self-averaging in the superfluid phase and the applicability of the standard quantum hydrodynamic action. We also formulate the necessary conditions which should be satisfied by the stong-randomness universality class, if one exists.  相似文献   

7.
We demonstrate that nearly critical quantum magnetic fluctuations in strongly correlated electron systems can change the Fermi surface topology and also lead to spin charge separation in two dimensions. To demonstrate these effects, we consider a small number of holes injected into the bilayer antiferromagnet. The system has a quantum critical point (QCP) which separates magnetically ordered and disordered phases. We demonstrate that in the physically interesting regime, there is a magnetically driven Lifshitz point (LP) inside the magnetically disordered phase. At the LP, the topology of the hole Fermi surface is changed. We also demonstrate that in this regime, the hole spin and charge necessarily separate when approaching the QCP. The considered model sheds light on generic problems concerning the physics of the cuprates.  相似文献   

8.
9.
《Comptes Rendus Physique》2013,14(8):651-666
The motion of elastic interfaces in disordered media is a broad topic relevant to many branches of physics. Field-driven magnetic domain wall motion in ultrathin ferromagnetic Pt/Co/Pt films can be well interpreted within the framework of theories developed to describe elastic interface dynamics in the presence of weak disorder. Indeed, the three theoretically predicted dynamic regimes of creep, depinning, and flow have all been directly evidenced in this model experimental system. We discuss these dynamic regimes and demonstrate how field-driven creep can be controlled not only by temperature and pinning, but also via interactions with magnetic entities located inside or outside the magnetic layer. Consequences of confinement effects in nano-devices are briefly reviewed, as some recent results on domain wall motion driven by an electric current or assisted by an electric field. Finally new theoretical developments and perspectives are discussed.  相似文献   

10.
We theoretically investigate the enhanced localization of bosonic atoms by fermionic atoms in three-dimensional optical lattices and find a self-trapping of the bosons for attractive boson-fermion interaction. Because of this mutual interaction, the fermion orbitals are substantially squeezed, which results in a strong deformation of the effective potential for bosons. This effect is enhanced by an increasing bosonic filling factor leading to a large shift of the transition between the superfluid and the Mott-insulator phase. We find a nonlinear dependency of the critical potential depth on the boson-fermion interaction strength. The results, in general, demonstrate the important role of higher Bloch bands for the physics of attractively interacting quantum gas mixtures in optical lattices and are of direct relevance to recent experiments with 87Rb-40K mixtures, where a large shift of the critical point has been found.  相似文献   

11.
We show that an ensemble of spinor Bose-Einstein condensates confined in a one-dimensional optical lattice can undergo a ferromagnetic phase transition and spontaneous magnetization arises due to the magnetic dipole-dipole interaction. This phenomenon is analogous to ferromagnetism in solid state physics, but occurs with bosons instead of fermions.  相似文献   

12.
We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation.  相似文献   

13.
We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation.  相似文献   

14.
The Bose–Hubbard model (BHM) is a standard model which describes the quantum behavior of ultracold bosons in optical lattice. When tuning the model parameters, a quantum phase transition from superfluid (SF) phase to Mott insulating (MI) phase emerges. However, an extra tunneling process – the density-induced tunneling – is usually ignored in the standard BHM. Using process-chain method, we give a thorough study of the phase diagram of the BHM with density-induced tunneling in different particle density regions and spatial dimensions. We find the density-induced tunneling process can affect the SF-MI phase boundary dramatically, by suppressing the MI region and tune the tip of the phase boundary to lower chemical potential. Our unbiased numerical study gives benchmark results of the phase diagram of the BHM with density-induced tunneling.  相似文献   

15.
The two-layer square lattice quantum antiferromagnet with spins 12 shows a zero-field magnetic order-disorder transition at a critical ratio of the inter-plane to intra-plane couplings. Adding a uniform magnetic field tunes the system to canted antiferromagnetism and eventually to a fully polarized state; similar behavior occurs for ferromagnetic intra-plane coupling. Based on a bond operator spin representation, we propose an approximate ground state wavefunction which consistently covers all phases by means of a unitary transformation. The excitations can be efficiently described as independent bosons; in the antiferromagnetic phase these reduce to the well-known spin waves, whereas they describe gapped spin-1 excitations in the singlet phase. We compute the spectra of these excitations as well as the magnetizations throughout the whole phase diagram. Received 23 April 2001  相似文献   

16.
We study the dissipation physics of a one dimensional mesoscopic superconducting quantum interference device array using the field-theoretical renormalization group method. We observe length scale dependent, superconductor-insulator quantum phase transition at very low temperature and also observe the dual behavior of the system for higher and lower values of magnetic field. At a critical magnetic field, we also observe a critical behavior where the resistance is independent of length.  相似文献   

17.
We study the superfluid to Mott‐insulator transition of bosons in an optical anisotropic lattice by employing the Bose‐Hubbard model living on a two‐dimensional lattice with anisotropy parameter κ. The compressible superfluid state and incompressible Mott‐insulator (MI) lobes are efficiently described analytically, using the quantum U(1) rotor approach. The ground state phase diagram showing the evolution of the MI lobes is quantified for arbitrary values of κ, corresponding to various kind of lattices: from square, through rectangular to almost one‐dimensional.  相似文献   

18.
19.
Quantum transport in disordered ferromagnetic (III,Mn)V semiconductors is studied theoretically. Mesoscopic wires exhibit an Anderson disorder-induced metal-insulator transition that can be controlled by a weak external magnetic field. This metal-insulator transition should also occur in other materials with large anisotropic magnetoresistance effects. The transition can be useful for studies of zero-temperature quantum critical phase transitions and fundamental material properties.  相似文献   

20.
《Comptes Rendus Physique》2016,17(8):808-835
We review recent developments regarding the quantum dynamics and many-body physics with light, in superconducting circuits and Josephson analogues, by analogy with atomic physics. We start with quantum impurity models addressing dissipative and driven systems. Both theorists and experimentalists are making efforts towards the characterization of these non-equilibrium quantum systems. We show how Josephson junction systems can implement the equivalent of the Kondo effect with microwave photons. The Kondo effect can be characterized by a renormalized light frequency and a peak in the Rayleigh elastic transmission of a photon. We also address the physics of hybrid systems comprising mesoscopic quantum dot devices coupled with an electromagnetic resonator. Then, we discuss extensions to Quantum Electrodynamics (QED) Networks allowing one to engineer the Jaynes–Cummings lattice and Rabi lattice models through the presence of superconducting qubits in the cavities. This opens the door to novel many-body physics with light out of equilibrium, in relation with the Mott–superfluid transition observed with ultra-cold atoms in optical lattices. Then, we summarize recent theoretical predictions for realizing topological phases with light. Synthetic gauge fields and spin–orbit couplings have been successfully implemented in quantum materials and with ultra-cold atoms in optical lattices — using time-dependent Floquet perturbations periodic in time, for example — as well as in photonic lattice systems. Finally, we discuss the Josephson effect related to Bose–Hubbard models in ladder and two-dimensional geometries, producing phase coherence and Meissner currents. The Bose–Hubbard model is related to the Jaynes–Cummings lattice model in the large detuning limit between light and matter (the superconducting qubits). In the presence of synthetic gauge fields, we show that Meissner currents subsist in an insulating Mott phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号