首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we consider random elliptic interface problems, namely, the media in elliptic equations have both randomness and interfaces. A Galerkin method using bi-orthogonal polynomials is used to convert the random problem into an uncoupled system of deterministic interface problems. A principle on how to choose the orders of the approximated polynomial spaces is given based on the sensitivity analysis in random spaces, with which the total degree of freedom can be significantly reduced. Then immersed finite element methods are introduced to solve the resulting system. Convergence results are given both theoretically and numerically.  相似文献   

2.
3.
This article proposes a selective immersed discontinuous Galerkin method based on bilinear immersed finite elements (IFE) for solving second‐order elliptic interface problems. This method applies the discontinuous Galerkin formulation wherever selected, such as those elements around an interface or a singular source, but the regular Galerkin formulation everywhere else. A selective bilinear IFE space is constructed and applied to the selective immersed discontinuous Galerkin method based on either the symmetric or nonsymmetric interior penalty discontinuous Galerkin formulation. The new method can solve an interface problem by a rectangular mesh with local mesh refinement independent of the interface even if its geometry is nontrivial. Meanwhile, if desired, its computational cost can be maintained very close to that of the standard Galerkin IFE method. It is shown that the selective bilinear IFE space has the optimal approximation capability expected from piecewise bilinear polynomials. Numerical examples are provided to demonstrate features of this method, including the effectiveness of local mesh refinement around the interface and the sensitivity to the penalty parameters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we propose simplified immersed interface methods for elliptic partial/ordinary differential equations with discontinuous coefficients across interfaces that are few isolated points in 1D, and straight lines in 2D. For one‐dimensional problems or two‐dimensional problems with circular interfaces, we propose a conservative second‐order finite difference scheme whose coefficient matrix is symmetric and definite. For two‐dimensional problems with straight interfaces, we first propose a conservative first‐order finite difference scheme, then use the Richardson extrapolation technique to get a second‐order method. In both cases, the finite difference coefficients are almost the same as those for regular problems. Error analysis is given along with numerical example. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 188–203, 2012  相似文献   

5.
We study global and local behaviors for three kinds of discontinuous Galerkin schemes for elliptic equations of second order. We particularly investigate several a posteriori error estimations for the discontinuous Galerkin schemes. These theoretical results are applied to develop local/parallel and adaptive finite element methods, based on the discontinuous Galerkin methods. Dedicated to Dr. Charles A. Micchelli on the occasion of his 60th birthday with friendship and esteem Mathematics subject classifications (2000) 65N12, 65N15, 65N30. Aihui Zhou: Subsidized by the Special Funds for Major State Basic Research Projects, and also partially supported by National Science Foundation of China. Reinhold Schneider: Supported in part by DFG Sonderforschungsbereich SFB 393. Yuesheng Xu: Correspondence author. Supported in part by the US National Science Foundation under grants DMS-9973427 and CCR-0312113, by Natural Science Foundation of China under grant 10371122 and by the Chinese Academy of Sciences under program “Hundreds Distinguished Young Chinese Scientists”.  相似文献   

6.
A discontinuous Galerkin (DG) discretization of Dirichlet problem for second-order elliptic equations with discontinuous coefficients in 2-D is considered. For this discretization, balancing domain decomposition with constraints (BDDC) algorithms are designed and analyzed as an additive Schwarz method (ASM). The coarse and local problems are defined using special partitions of unity and edge constraints. Under certain assumptions on the coefficients and the mesh sizes across ∂Ωi, where the Ωi are disjoint subregions of the original region Ω, a condition number estimate C(1+maxilog(Hi/hi))2 is established with C independent of hi, Hi and the jumps of the coefficients. The algorithms are well suited for parallel computations and can be straightforwardly extended to the 3-D problems. Results of numerical tests are included which confirm the theoretical results and the necessity of the imposed assumptions.  相似文献   

7.
In this article, we prove some weighted pointwise estimates for three discontinuous Galerkin methods with lifting operators appearing in their corresponding bilinear forms. We consider a Dirichlet problem with a general second-order elliptic operator.

  相似文献   


8.
In this article, we analyze a discontinuous finite element method recently introduced by Bassi and Rebay for the approximation of elliptic problems. Stability and error estimates in various norms are proven. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 365–378, 2000  相似文献   

9.
An abstract theory for discretizations of second-order quasilinear elliptic problems based on the mixed-hybrid discontinuous Galerkin method. Discrete schemes are formulated in terms of approximations of the solution to the problem, its gradient, flux, and the trace of the solution on the interelement boundaries. Stability and optimal error estimates are obtained under minimal assumptions on the approximating space. It is shown that the schemes admit an efficient numerical implementation.  相似文献   

10.
This article is devoted to the a priori error estimates of the fully discrete Crank-Nicolson approximation for the linear parabolic interface problem via weak Galerkin finite element methods (WG-FEM). All the finite element functions are discontinuous for which the usual gradient operator is implemented as distributions in properly defined spaces. Optimal order error estimates in both $L^{\infty}(H^1)$ and $L^{\infty}(L^2)$ norms are established for lowest order WG finite element space $({\cal P}_{k}(K),\;{\cal P}_{k-1}(\partial K),\;\big[{\cal P}_{k-1}(K)\big]^2)$. Finally, we give numerical examples to verify the theoretical results.  相似文献   

11.
A general analysis framework is presented in this paper for many different types of finite element methods(including various discontinuous Galerkin methods). For the second-order elliptic equation-div(α▽u) = f, this framework employs four different discretization variables, uh, p_h, uhand p_h, where uh and phare for approximation of u and p =-α▽u inside each element, and uhand phare for approximation of the residual of u and p·n on the boundary of each element. The resulting 4-field discretization is proved to satisfy two types of inf-sup conditions that are uniform with respect to all discretization and penalization parameters. As a result, many existing finite element and discontinuous Galerkin methods can be analyzed using this general framework by making appropriate choices of discretization spaces and penalization parameters.  相似文献   

12.
13.
Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the L 2-error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context.  相似文献   

14.
Chen  Yanping  Li  Qingfeng  Wang  Yang  Huang  Yunqing 《Numerical Algorithms》2020,84(1):307-330
Numerical Algorithms - In this paper, we present two efficient two-grid algorithms for solving two-dimensional semi-linear elliptic interface problems using finite element method. To linearize the...  相似文献   

15.
This paper is concerned with fast spectral-Galerkin Jacobi algorithms for solving one- and two-dimensional elliptic equations with homogeneous and nonhomogeneous Neumann boundary conditions. The paper extends the algorithms proposed by Shen (SIAM J Sci Comput 15:1489–1505, 1994) and Auteri et al. (J Comput Phys 185:427–444, 2003), based on Legendre polynomials, to Jacobi polynomials with arbitrary α and β. The key to the efficiency of our algorithms is to construct appropriate basis functions with zero slope at the endpoints, which lead to systems with sparse matrices for the discrete variational formulations. The direct solution algorithm developed for the homogeneous Neumann problem in two-dimensions relies upon a tensor product process. Nonhomogeneous Neumann data are accounted for by means of a lifting. Numerical results indicating the high accuracy and effectiveness of these algorithms are presented.  相似文献   

16.
In this article, we develop the a posteriori error estimation of hp–version discontinuous Galerkin composite finite element methods for the discretization of second‐order elliptic partial differential equations. This class of methods allows for the approximation of problems posed on computational domains which may contain a huge number of local geometrical features, or microstructures. Although standard numerical methods can be devised for such problems, the computational effort may be extremely high, as the minimal number of elements needed to represent the underlying domain can be very large. In contrast, the minimal dimension of the underlying composite finite element space is independent of the number of geometric features. Computable bounds on the error measured in terms of a natural (mesh‐dependent) energy norm are derived. Numerical experiments highlighting the practical application of the proposed estimators within an automatic hp–adaptive refinement procedure will be presented. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1342–1367, 2014  相似文献   

17.
In this article, a one parameter family of discontinuous Galerkin finite volume element methods for approximating the solution of a class of second‐order linear elliptic problems is discussed. Optimal error estimates in L2 and broken H1‐ norms are derived. Numerical results confirm the theoretical order of convergences. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

18.
S.-S. Chow 《PAMM》2007,7(1):2020063-2020064
Several problems in many applications involve the solution of partial differential equations with gradient dependent nonlinearity. The numerical solution of the resulting nonlinear system is rather expensive. We present an alternating direction Galerkin method that allows much faster solution of the nonlinear system. The alternating direction formulation help reduce the problem into a sequence of nonlinear systems that may be solved very efficiently. Theoretical study of the convergence of the method will also be presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper, we consider the finite element methods for solving second order elliptic and parabolic interface problems in two-dimensional convex polygonal domains. Nearly the same optimal -norm and energy-norm error estimates as for regular problems are obtained when the interfaces are of arbitrary shape but are smooth, though the regularities of the solutions are low on the whole domain. The assumptions on the finite element triangulation are reasonable and practical. Received July 7, 1996 / Revised version received March 3, 1997  相似文献   

20.
In this article, we analyze the Petrov‐Galerkin immersed finite element method (PG‐IFEM) when applied to one‐dimensional elliptic interface problems. In the PG‐IFEM (T. Hou, X. Wu and Y. Zhang, Commun. Math. Sci., 2 (2004), 185‐205, and S. Hou and X. Liu, J. Comput. Phys., 202 (2005), 411‐445), the classic immersed finite element (IFE) space was taken as the trial space while the conforming linear finite element space was taken as the test space. We first prove the inf‐sup condition of the PG‐IFEM and then show the optimal error estimate in the energy norm. We also show the optimal estimate of the condition number of the stiffness matrix. The results are extended to two dimensional problems in a special case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号