首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The convergence of many iterative procedures, in particular that of the conjugate gradient method, strongly depends on the condition number of the linear system to be solved. In cases with a large condition number, therefore, preconditioning is often used to transform the system into an equivalent one, with a smaller condition number and therefore faster convergence. For Poisson-like difference equations with flat grids, the vertical part of the difference operator is dominant and tridiagonal and can be used for preconditioning. Such a procedure has been applied to incompressible atmospheric flows to preserve incompressibility, where a system of Poisson-like difference equations is to be solved for the dynamic pressure part. In the mesoscale atmospheric model KAMM, convergence has been speeded up considerably by tridiagonal preconditioning, even though the system matrix is not symmetric and, hence, the biconjugate gradient method must be used.  相似文献   

2.
引入Charent压力变量,对于多孔介质中两相不可压缩流体的非混溶驱动问题,其模型表现为耦合的非线性偏微分方程组,一个是压力方程,另一个为饱和度方程.文中考虑一维问题且假定达西速度“已知,建立了在时间上进行局部加密的有限差分格式,给出了饱和度的最大模误差估计.最后给出了数值算例.  相似文献   

3.
Moscow Physico-Technical Institute. Translated from Matematicheskoe Modelirovanie, Published by Moscow University, Moscow, 1993, pp. 105–113.  相似文献   

4.
Biharmonic equations have many applications, especially in fluid and solid mechanics, but is difficult to solve due to the fourth order derivatives in the differential equation. In this paper a fast second order accurate algorithm based on a finite difference discretization and a Cartesian grid is developed for two dimensional biharmonic equations on irregular domains with essential boundary conditions. The irregular domain is embedded into a rectangular region and the biharmonic equation is decoupled to two Poisson equations. An auxiliary unknown quantity Δu along the boundary is introduced so that fast Poisson solvers on irregular domains can be used. Non-trivial numerical examples show the efficiency of the proposed method. The number of iterations of the method is independent of the mesh size. Another key to the method is a new interpolation scheme to evaluate the residual of the Schur complement system. The new biharmonic solver has been applied to solve the incompressible Stokes flow on an irregular domain.   相似文献   

5.
In this article, we develop and analyze a mixed finite element method for the Stokes equations. Our mixed method is based on the pseudostress‐velocity formulation. The pseudostress is approximated by the Raviart‐Thomas (RT) element of index k ≥ 0 and the velocity by piecewise discontinuous polynomials of degree k. It is shown that this pair of finite elements is stable and yields quasi‐optimal accuracy. The indefinite system of linear equations resulting from the discretization is decoupled by the penalty method. The penalized pseudostress system is solved by the H(div) type of multigrid method and the velocity is then calculated explicitly. Alternative preconditioning approaches that do not involve penalizing the system are also discussed. Finally, numerical experiments are presented. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

6.
Two-phase ,incompressible miscible flow in porous media is governed by a system ofnonlinear partial differential equations. The pressure equation ,which is e11iptic in appearance ,isdiseretizod by a standard five-points difference method, The concentration equation is treated byan impliclt finite difference method that appbes a form of the method of characterlstics to thetransport terms. A class of biquadlatle interpolation is introduced for the method of chracteristics.Convergence rate is proved to be O(△t h^2)。  相似文献   

7.
Parallel analogs of the variants of the incomplete Cholesky-conjugate gradient method and the modified incomplete Cholesky-conjugate gradient method for solving elliptic equations on uniform triangular and unstructured triangular grids on parallel computer systems with the MIMD architecture are considered. The construction of parallel methods is based on the use of various variants of ordering the grid points depending on the decomposition of the computation domain. Results of the theoretic and experimental studies of the convergence rate of these methods are presented. The solution of model problems on a moderate number processors is used to examine the efficiency of the proposed parallel methods.  相似文献   

8.
When the artificial compressibility method in conjunction with high-order upwind compact finite difference schemes is employed to discretize the steady-state incompressible Navier-Stokes equations, in each pseudo-time step we need to solve a structured system of linear equations approximately by, for example, a Krylov subspace method such as the preconditioned GMRES. In this paper, based on the special structure and concrete property of the linear system we construct a structured preconditioner for its coefficient matrix and estimate eigenvalue bounds of the correspondingly preconditioned matrix. Numerical examples are given to illustrate the effectiveness of the proposed preconditioning methods.  相似文献   

9.
We propose a modified adaptive multiresolution scheme for solving dd-dimensional hyperbolic conservation laws which is based on cell-average discretization in dyadic grids. Adaptivity is obtained by interrupting the refinement at the locations where appropriate scale (wavelet) coefficients are sufficiently small. One important aspect of such a multiresolution representation is that we can use the same binary tree data structure for domains of any dimension. The tree structure allows us to succinctly represent the data and efficiently navigate through it. Dyadic grids also provide a more gradual refinement as compared with the traditional quad-trees (2D) or oct-trees (3D) that are commonly used for multiresolution analysis. We show some examples of adaptive binary tree representations, with significant savings in data storage when compared to quad-tree based schemes. As a test problem, we also consider this modified adaptive multiresolution method, using a dynamic binary tree data structure, applied to a transport equation in 2D domain, based on a second-order finite volume discretization.  相似文献   

10.
In this paper, we use some finite difference methods in order to solve an atmospheric flow problem described by an advection–diffusion equation. This flow problem was solved by Clancy using forward‐time central space (FTCS) scheme and is challenging to simulate due to large errors in phase and amplitude which are generated especially over long propagation times. Clancy also derived stability limits for FTCS scheme. We use Von Neumann stability analysis and the approach of Hindmarsch et al. which is an improved technique over that of Clancy in order to obtain the region of stability of some methods such as FTCS, Lax–Wendroff (LW), Crank–Nicolson. We also construct a nonstandard finite difference (NSFD) scheme. Properties like stability and consistency are studied. To improve the results due to significant numerical dispersion or numerical dissipation, we derive a new composite scheme consisting of three applications of LW followed by one application of NSFD. The latter acts like a filter to remove the dispersive oscillations from LW. We further improve the composite scheme by computing the optimal temporal step size at a given spatial step size using two techniques namely; by minimizing the square of dispersion error and by minimizing the sum of squares of dispersion and dissipation errors.  相似文献   

11.
This paper investigates the effectiveness of two different Algebraic Multigrid (AMG) approaches to the solution of 4th‐order discrete‐difference equations for incompressible fluid flow (in this case for a discrete, scalar, stream‐function field). One is based on a classical, algebraic multigrid, method (C‐AMG) the other is based on a smoothed‐aggregation method for 4th‐order problems (SA‐AMG). In the C‐AMG case, the inter‐grid transfer operators are enhanced using Jacobi relaxation. In the SA‐AMG case, they are improved using a constrained energy optimization of the coarse‐grid basis functions. Both approaches are shown to be effective for discretizations based on uniform, structured and unstructured, meshes. They both give good convergence factors that are largely independent of the mesh size/bandwidth. The SA‐AMG approach, however, is more costly both in storage and operations. The Jacobi‐relaxed C‐AMG approach is faster, by a factor of between 2 and 4 for two‐dimensional problems, even though its reduction factors are inferior to those of SA‐AMG. For non‐uniform meshes, the accuracy of this particular discretization degrades from 2nd to 1st order and the convergence factors for both methods then become mesh dependent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This article presents a time-accurate numerical method using high-order accurate compact finite difference scheme for the incompressible Navier-Stokes equations. The method relies on the artificial compressibility formulation, which endows the governing equations a hyperbolic-parabolic nature. The convective terms are discretized with a third-order upwind compact scheme based on flux-difference splitting, and the viscous terms are approximated with a fourth-order central compact scheme. Dual-time stepping is implemented for time-accurate calculation in conjunction with Beam-Warming approximate factorization scheme. The present compact scheme is compared with an established non-compact scheme via analysis in a model equation and numerical tests in four benchmark flow problems. Comparisons demonstrate that the present third-order upwind compact scheme is more accurate than the non-compact scheme while having the same computational cost as the latter.  相似文献   

13.
Summary. The convergence of a fourth order finite difference method for the 2-D unsteady, viscous incompressible Boussinesq equations, based on the vorticity-stream function formulation, is established in this article. A compact fourth order scheme is used to discretize the momentum equation, and long-stencil fourth order operators are applied to discretize the temperature transport equation. A local vorticity boundary condition is used to enforce the no-slip boundary condition for the velocity. One-sided extrapolation is used near the boundary, dependent on the type of boundary condition for the temperature, to prescribe the temperature at ghost points lying outside of the computational domain. Theoretical results of the stability and accuracy of the method are also provided. In numerical experiments the method has been shown to be capable of producing highly resolved solutions at a reasonable computational cost.Mathematics Subject Classification (1991): 35Q35, 65M06, 76M20  相似文献   

14.
Known results for linear difference equations mod 2 with T-periodic solutions are extended and compiled for applications to the semicycle analysis of nonlinear difference equations. For the calculation of T, four methods are presented. A further application concerns rational functions in the field of integers mod 2.  相似文献   

15.
In this paper, theoretical results are described on the maximum norm stability and accuracy of finite difference discretizations of parabolic equations on overset nonmatching space-time grids. We consider parabolic equations containing a linear reaction term on a space-time domain which is decomposed into an overlapping collection of cylindrical subregions of the form , for . Each of the space-time domains are assumed to be independently grided (in parallel) according to the local geometry and space-time regularity of the solution, yielding space-time grids with mesh parameters and . In particular, the different space-time grids need not match on the regions of overlap, and the time steps can differ from one grid to the next. We discretize the parabolic equation on each local grid by employing an explicit or implicit -scheme in time and a finite difference scheme in space satisfying a discrete maximum principle. The local discretizations are coupled together, without the use of Lagrange multipliers, by requiring the boundary values on each space-time grid to match a suitable interpolation of the solution on adjacent grids. The resulting global discretization yields a large system of coupled equations which can be solved by a parallel Schwarz iterative procedure requiring some communication between adjacent subregions. Our analysis employs a contraction mapping argument.

Applications of the results are briefly indicated for reaction-diffusion equations with contractive terms and heterogeneous hyperbolic-parabolic approximations of parabolic equations.

  相似文献   


16.
The goal of this contribution is the numerical simulation of Newtonian fluid flow. In order to solve the governing incompressible Navier-Stokes equations, a mixed finite element based on a least-squares formulation is presented. We derive a div-grad first-order system resulting in a three-field approach with stresses, velocities, and pressure as unknowns, see e.g. Cai et al. [1], which is the basis for the associated minimization problem. Finally, a numerical example is presented to show the applicability and performance of the considered formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The theorems on the estimate of solutions for nonlinear second-order partial differential functional equations mainly of parabolic type with Dirichlet’s condition and for the suitable explicit finite difference functional schemes are proved. The proofs are based on the comparison technique. The convergent difference method given is considered without an assumption of the global generalized Perron condition on the functional variable but with local one in some sense only. It is a consequence of our estimate theorems. The functional dependence is of the Volterra type.  相似文献   

18.
19.
A general method is developed to obtain conditions on initial data and forcing terms for the global existence of unique regular solutions to incompressible 3d Navier-Stokes equations. The basic idea generalizes a probabilistic approach introduced by LeJan and Sznitman (1997) to obtain weak solutions whose Fourier transform may be represented by an expected value of a stochastic cascade. A functional analytic framework is also developed which partially connects stochastic iterations and certain Picard iterates. Some local existence and uniqueness results are also obtained by contractive mapping conditions on the Picard iteration.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号