首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Mishin镶嵌原子势, 通过分子动力学方法模拟了金属Cu的低指数表面在不同温度的表面熔化行为, 分析了熔化过程中系统结构组态的变化以及固-液界面迁移情况. 金属Cu的(100)和(110)表面在低于熔点发生预熔化, 而(111)表面存在明显的过热现象. 准液体层的厚度随温度升高而增加, 热稳定性与表面的密排顺序一致, 按(111)、(100)、(110)顺序增大. 当温度高于热力学熔点时, 固液界面的移动速度与温度成正比, 外推得到热力学熔点约为1360~1380 K, 与实验结果1358 K吻合良好. 动力学系数定义为界面移动速度与过热程度的比值, 表现为明显的各向异性: k100=39 cm•s−1•K−1, k110=29 cm•s−1•K−1, k111=20 cm•s−1•K−1. k100与k110之间的比例符合collision-limited理论, (111)密排面有与其它低指数表面不同的熔化方式.  相似文献   

2.
采用分子动力学模拟技术,以液态金属Ni为例,研究了在不同冷却条件下形成晶体及非晶的过程.模拟采用镶嵌原子法(EAM)作用势,得到了不同温度、不同冷却速度下Ni的径向分布函数以及原子组态变化的重要信息,利用键对分析技术探讨了二十面体准晶对非晶形成的影响.  相似文献   

3.
使用Tight-binding势函数, 对FCC-Ni升温熔化过程的结构变化进行了分子动力学模拟. 在定压条件下模拟得到的Ni的熔点在1850 K与1900 K之间. 计算得到了体系在各温度下的径向分布函数和配位数分布等静态结构信息以及动力学性质. 计算得出的液体Ni的扩散系数在1900 K时约为5.02×10−9 m2•s−1, 与实验数据相符. 对液态体系中FCC短程有序结构可能发生的畸变以及由此导致的H-A键型变化进行了分析, 结合配位体构型搜索和键对分析方法计算了各温度下不同短程有序结构的分布. 计算表明, Ni在熔化之后仍保留有部分晶态短程结构, 但发生了较大的畸变, 同时液态中有少量的缺陷二十面体结构存在. 而液体Ni中大多数的配位体的几何构型介于FCC与缺陷二十面体之间.  相似文献   

4.
采用分子动力学模拟方法对液态NiAl凝固过程进行了研究,考察了不同冷却速度下液态NiAl结构变化特点,原子间相互作用势采用F-S多体势,结构分析采用键取向序和对分析技术.计算结果表明,冷却速度对液态NiAl结构转变有重要影响,在不同的冷却速度下, NiAl凝固过程出现了明显不同,冷速为4×1013和4×1012 K/s时, NiAl快速凝固为无序的非晶体结构;而在较慢的8×1011 K/s冷速下, NiAl凝固为晶态结构.给出了不同冷却速度下液态NiAl结构转变的微观信息.  相似文献   

5.
Molecular dynamics simulations of a Ni2+ ion in water have been carried out to investigate the structure and dynamics of water molecules around the nickel, extending the analysis to the second hydration shell. The structural parameters as well as the motions of water molecules in various sub-structures of the solution have been evaluated giving a detailed picture of the motional modes of water molecules  相似文献   

6.
Molecular Dynamics Simulations of Energetic Solids   总被引:1,自引:0,他引:1  
A continuing objective in the area of energetic materials is to reduce sensitivity toward impact and shock. One approach is to develop a better understanding of how factors related to the crystal lattice, e.g., defects, influence the initiation and propagation of detonation. Molecular dynamics is a useful tool for this purpose. This paper presents an overview of molecular dynamics treatments of energetic solids. Some of these have simulated initiation and propagation in idealized systems; others have focused on developing a satisfactory procedure for describing molecular crystals of practical significance. Our emphasis in this discussion is on the progress that has been made along the second lines.  相似文献   

7.
A series of simulations of the crystallization and vitrification processes for metal Cu were carried out by means of the molecular dynamics technique. The radial distribution function, common neighbors, internal energy and volume of the system were recorded during the processes. The atomic internal energy, atomic Voronoi volume and atomic stress field of the relax system were analyzed at zero temperature. The interaction between atoms in the system is described using the embedded atom potential as proposed by Mishin. The simulation results show that crystalline and non-crystalline phases form at lower and higher cooling rates respectively. In comparison to nanocrystals, it is found that metallic glass has higher internal energy and larger volume. The intrinsic stress field is induced by distortion of the lattice.  相似文献   

8.
甲硫氨酸-脑啡肽的分子动力学模拟   总被引:1,自引:1,他引:0  
The conformational properties of Met-enkephalin (Tyr-Gly-Gly-Phe-Met) were investigated by high temperature quenched molecular dynamics simulations in vapor. Each of these selected structures were then analyzed according to their backbone(φ,Ψ) conformational distributions and sorted into 13 families by computing the rms difference between the Cα-C backbone fragments of each residue over all the structures. Selected lowest energy conformations from each of 13 families were thoroughly energy minimized. The results of simulations show that Met-enkephalin is a flexible molecule. It shows a type Ⅰβ-turn, with the Gly2 carbonyl forming a hydrogen bond with the Met5 amino proton and a type Ⅱβ turn, with the Tyr1 amino proton forming a hydrogen bond with the Phe4 carbonyl. The multiple fit were carried out for all of the 13 conformers with morphine(9 atoms on the pharmacophore groups). F2 and F6 were the most similar to morphine. The rms were 0.0504 nm and 0.0726 nm. The results of simulations also show that Tyr amino N corresponds to N on piperidine ring in morphine, Tyr phenol corresponds to the phenol in morphine, the aromatic ring of Phe corresponds to the cyclohexene ring in morphine. The distances between the three pharmacophores, d1 (Tyr N to Tyr OH), d2 (Tyr N to Tyr du1), d3(Tyr N to Phe du2) and d4(Tyr N to Phe du2) were found to be about 0.8, 0.5, 0.7-0.9 and 0.5 nm, respectively, the corresponding, distances of morphine were found to be 0.7697(N18 to O6),0.5143(N18 to du25), 0.3962(N18 to du24)和0.5566(N18 to O15)nm. Therefore, they may be acted on the same receptor. This model should aid in pharmaceutical design of peptide and nonpeptide ligands with opioid.  相似文献   

9.
采用基于原子镶嵌势函数的分子动力学方法, 模拟了银纳米线沿[100]、[110]和[111]晶向拉伸过程中的空间原子结构和性能. 研究结果表明不同晶向的材料力学性质有显著不同, 屈服应力按照[111]、[110]和[100]依次降低. 从形变位图观察到纳米线在断裂前形成单原子线排列. 由900个分子动力学模拟样本统计得出沿三个晶向形成单原子线的几率, 其中沿[111]晶向形成单原子线的几率明显高于其他两个晶向. 本文从形变机理阐述了单原子线生成几率与晶向的依赖关系.  相似文献   

10.
采用分子动力学方法模拟了金属铜的升温熔化过程.原子间作用势采用FS (Finnis-Sinclair)势,结构分析采用双体分布函数(PCF)、均方位移(MSD)等方法.计算结果表明,在连续升温过程中,金属铜在1444 K熔化,在该熔化点的扩散系数为4.31×10-9 m2•s-1.上述结论与实验值相当接近,并且比之采用EAM镶嵌原子势所作模拟得到的结果更佳,说明FS势可以用来处理象液铜这样较复杂的无序体系.本文指出了升温速率在金属熔化过程中所起的作用.  相似文献   

11.
杨镇  刘海  何远航 《物理化学学报》2016,32(8):1977-1982
为了得到飞秒激光侵蚀(FLA)1, 3二硝基甲苯(简称DNB,分子式:C6H4N2O4),六硝基六氮杂异伍兹烷(简称CL20,分子式:C6H6N12O12)和CL20/DNB共晶系统的物理和化学响应过程,本文采用ReaxFF/lg反应力场对其过程进行模拟。计算结果表明,CL20/DNB系统的温度和压力在飞秒激光加载过程中出现阶跃,激光加载过程后系统有一个冷却过程,然后系统的温度和压力逐渐升高达到最大值并维持平衡。研究发现,在此过程中CL20和CL20/DNB系统触发反应均为CL20分子中的N―NO2断裂。CL20系统的分解速率大于CL20/DNB共晶系统,这可能是因为共晶系统在反应初期具有大量的DNB分子以及分解产物中含有比较稳定的苯环减少了CL20及其产物之间的有效碰撞。  相似文献   

12.
通过分子动力学方法,研究了不同冷速下贵金属Au在温度2000~300K的冷却过程中微观结构的变化特点。结果发现,冷却速度对Au的微观结构产生重要影响。采用偶关联函数和键对分析技术对原子局域团簇结构进行分析,并考察了冷却过程中原子势能随温度的变化,比较了Au的微观结构转变与能量变化的对应关系,从能量转化的角度对冷却过程中Au的结构变化进行了说明。  相似文献   

13.
用分子动力学模拟方法对液态Au3Cu冷却过程进行了研究,考察了不同冷却速度下Au3Cu结构变化特点,原子间相互作用势采用F-S多体势,结构分析采用键取向序和对分析技术.计算结果表明,冷却速度对液态Au3Cu能量及结构转变有重要影响,给出了不同冷却速度下液态Au3Cu结构转变的微观信息.  相似文献   

14.
为了更好地理解贻贝在表面的黏附机理,实现水下胶黏,采用分子动力学方法研究了多巴在自组装膜上的黏附性:采用伞形取样和加权柱状图分析方法计算了多巴在不同自组装膜表面的黏附自由能,使用拉伸分子动力学模拟研究了多巴在不同自组装膜表面上黏附后的脱附力.结果表明,多巴在带负电的羧基自组装膜上的黏附能比在带正电的氨基自组装膜上的大,多巴更容易黏附到带负电表面;多巴在带电表面的黏附能比未带电表面的黏附能更强,表明在带电表面黏附更稳定.进一步分析了多巴在不同表面的取向分布,发现多巴与不同表面相互作用的方式不同:与疏水表面主要通过苯环相互作用;与亲水表面主要通过羟基相互作用;与负电表面主要通过氨基相互作用;与正电表面主要通过羧基相互作用.通过模拟比较了多巴在不同自组装膜上的脱附力,发现多巴在带电表面的脱附力比在未带电表面的大,与黏附能的趋势一致.对比4种非带电表面的脱附力,发现多巴在疏水性甲基自组装膜表面的脱附力最大,黏附更稳定,随着表面疏水性的增加,脱附力增大,黏附稳定性增强.本工作可为研发新型水下胶黏剂提供理论指导.  相似文献   

15.
The thin-film growth has been confirmed to be assembled by an enormous number of clusters in ICBD method. In sequence of clusters’ depositions proceeds to form the thin-film to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms, we use molecular dynamics simulation with EAM potential. The quantitative of flatness of deposition and percent of disordered atoms were proposed to evaluate the property of thin-film. In this simulation, three different Co cluster sizes of 55, 70, and 100 atoms with different velocities (100 up to 800 m/s) were deposited on a Al(0 0 1) substrate whose temperatures were set between 300 and 500 K. The simulations begin at specific equilibrium temperature of clusters and the substrate. The simulations are performed at different temperatures of the clusters and substrate and for different sizes of clusters. We showed that the percent of disordered atoms of substrate are affected by the cluster size and velocity of the clusters. Temperature dependence of the number of disordered atoms for different cluster’s velocity was observed. We investigated the effect of cluster size and initial velocity of cluster on the value of flatness.  相似文献   

16.
采用分子动力学方法,在正侧(NVT)系综下研究了N-脒基脲二硝酰胺盐(FOX-12)在溶剂中的晶体形貌.通过构建溶剂分子层-晶面的界面吸附模型模拟其动力学平衡构型,计算溶剂与晶体表面间的结合能,进而对真空附着能进行修正并获得溶剂条件下的晶貌.使用自然冷却法在水和水/甲醇中培养FOX-12晶体并利用扫描电子显微镜进行了表征.结果表明,在真空条件下决定FOX-12晶貌的6个重要晶面为(110),(200),(201),(011),(002)和(111);FOX-12在水溶液条件下的主要晶面为(110)和(011),在水/甲醇溶液条件下的主要晶面为(200)和(011),预测的晶体形貌与实验结果相吻合.对水分子和FOX-12的(110)面间的径向分布函数进行了计算,分析了水分子和晶面间的分子间作用力.  相似文献   

17.
为研究铀酰离子在高岭土不同基面上的吸附, 对含有0.01 mol·L-1碳酸铀酰液相和9×9×3个高岭土单胞的粘土固相的模拟盒子进行了分子动力学模拟. 从模拟的截图中直观地观察到了铀酰离子的吸附位点, 由径向分布函数得到了铀酰离子与水中氧原子的配位情况. 利用原子密度剖面图讨论铀酰离子在两个基面上的吸附倾向, 并从原子密度剖面图和均方位移等角度证实了铀酰离子在硅氧面上形成了外界配合物. 从理论上证明了表面配合模型对于吸附位点所做简化的合理性.  相似文献   

18.
简要回顾了近年来国内外分子动力学模拟自组装的研究,对已报道的建模方法、可视化表现以及相关应用略作概述,并以此为基础对自组装过程的分子动力学模拟研究所面临的问题和尚需深入的内容进行了讨论。基于自组装、相变和涨落的固有联系,提出了以研究波动为手段,和以频率相关热容为研究对象的探索方向。希望能够为分子动力学模拟推动自组装研究提供有益的参考。  相似文献   

19.
利用分子动力学方法,模拟石墨烯/聚乙烯复合材料的微观结构和性能,并采用单轴拉伸模拟方法研究石墨烯/聚乙烯复合材料的拉伸性能.结果表明,在石墨烯/聚乙烯复合材料平衡构型中,聚乙烯基体分子在石墨烯表面处形成多层吸附层,吸附层处于动态稳定状态,层内分子可以发生扩散迁移.吸附层内聚乙烯分子发生"吸附固化"现象,分子弯曲程度减弱,发生有序排列,且在垂直于石墨烯方向的运动性能受到抑制.拉伸模拟结果表明,石墨烯能够提高聚乙烯材料的拉伸性能.在弹性区和屈服区,石墨烯阻碍了复合材料在垂直于拉伸方向的压缩变形,聚乙烯分子"吸附固化"结构保持稳定,引起体系整体应力的迅速升高.在软化区,由于石墨烯发生剧烈弯曲,"吸附固化"结构发生破坏,最终引起体系应力迅速减小.在弹性区和屈服区,体系应变主要引起了非键相互作用的改变.在软化区之后,应变主要导致了体系内分子成键相互作用的改变.应变速率能够提高复合材料的屈服应力,而不改变复合材料应力应变的整体趋势.  相似文献   

20.
During the hot-dip process of Cu on the surface of the steel,it involves the solidification from liquid to coating. The cooling rate has great influence on the microstructure and the performance. By means of constanttemperature,constant-pressure molecular dynamics simulation technique,the solidification process of the liquid model system made of 500 Cu particles has been studied with the period boundary condition. With the pairs analysis technology and the bond orientational order method,the difference of the structure and energy of the liquid Cu model system between different cooling velocities has been compared. The significant information of microcosmic structural transformation in the solidification process of liquid Cu system has been obtained. The calculation results show that the Finnis-Sinclair(FS)potential works very well in the solidification process of Cu. Cooling slowly the crystal copper layer can be obtained. Cooling quickly the amorphous copper layer can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号