首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inclusion of a flat metric tensor in gravitation permits the formulation of a gravitational stress-energy tensor and the formal derivation of general relativity from a linear theory in flat spacetime. Building on the works of Kraichnan and Deser, we present such a derivation using universal coupling and gauge invariance.Next we slightly weaken the assumptions of universal coupling and gauge invariance, obtaining a larger "slightly bimetric" class of theories, in which the Euler-Lagrange equations depend only on a curved metric, matter fields, and the determinant of the flat metric. The theories are equivalent to generally covariant theories with an arbitrary cosmological constant and an arbitrarily coupled scalar field, which can serve as an inflaton or dark matter.The question of the consistency of the null cone structures of the two metrics is addressed.  相似文献   

2.
3.
We discuss the concepts of Weyl and Riemann frames in the context of metric theories of gravity and state the fact that they are completely equivalent as far as geodesic motion is concerned. We apply this result to conformally flat spacetimes and show that a new picture arises when a Riemannian spacetime is taken by means of geometrical gauge transformations into a Minkowskian flat spacetime. We find out that in the Weyl frame gravity is described by a scalar field. We give some examples of how conformally flat spacetime configurations look when viewed from the standpoint of a Weyl frame. We show that in the non-relativistic and weak field regime the Weyl scalar field may be identified with the Newtonian gravitational potential. We suggest an equation for the scalar field by varying the Einstein-Hilbert action restricted to the class of conformally-flat spacetimes. We revisit Einstein and Fokker’s interpretation of Nordstr?m scalar gravity theory and draw an analogy between this approach and the Weyl gauge formalism. We briefly take a look at two-dimensional gravity as viewed in the Weyl frame and address the question of quantizing a conformally flat spacetime by going to the Weyl frame.  相似文献   

4.
In this Letter we show the existence of topological multi-vortex solutions in the self-dual Chern–Simons–Higgs theory in a background metric which interpolates flat spacetime and cylinder smoothly.  相似文献   

5.
We present three hypotheses which underlie a new general relativistic theory of gravitation for microphysical systems. According to this theory the metric and the independent affine connection of spacetime are determined by the momentum current and the newly recognized “hypermomentum” current of matter.  相似文献   

6.
If Einstein's equations are to describe a field theory of gravity in Minkowski spacetime, then causality requires that the effective curved metric must respect the flat background metric's null cone. The kinematical problem is solved using a generalized eigenvector formalism based on the Segré classification of symmetric rank 2 tensors with respect to a Lorentzian metric. Securing the correct relationship between the two null cones dynamically plausibly is achieved using the naive gauge freedom. New variables tied to the generalized eigenvector formalism reduce the configuration space to the causality-respecting part. In this smaller space, gauge transformations do not form a group, but only a groupoid. The flat metric removes the difficulty of defining equal-time commutation relations in quantum gravity and guarantees global hyperbolicity.  相似文献   

7.
《Physics letters. [Part B]》1987,195(3):349-356
We show that cosmological solutions in Kaluza-Klein theory in more than five dimensions are unstable. This is due to the fact that the extra cosmic scale factors appearing in the metric ansatz act as scalar matter fields in the physical four-dimensional spacetime. These fields have physically unacceptable features: their kinetic energy can be negative and the energy spectrum is unbounded from below. To remove the defects a reinterpretation of the cosmological metric ansatz is necessary.  相似文献   

8.
Quantum gravity seems to introduce a new level of unpredictability into physics over and above that normally associated with the uncertainty principle. This is because the metric of spacetime can fluctuate from being globally hyperbolic. In other words, the evolution is not completely determined by Cauchy data at past or future infinity. I present a number of axioms that the asymptotic Green functions should obey in any reasonable theory of quantum gravity. These axioms are the same as for ordinary quantum field theory in flat spacetime, except that one axiom, that of asymptotic completeness, is omitted. This allows pure quantum states to decay into mixed states. Calculations with simple models of topologically non-trivial spacetime indicate that such loss of quantum coherence will occur but that the effect will be very small except for fundamental scalar particles, if any such exist.  相似文献   

9.
Conformal transformations are frequently used tools in order to study relations between various theories of gravity and Einstein's general relativity theory. In this paper we discuss the rules of these transformations for geometric quantities as well as for the matter energy‐momentum tensor. We show the subtlety of the matter energy‐momentum conservation law which refers to the fact that the conformal transformation “creates” an extra matter term composed of the conformal factor which enters the conservation law. In an extreme case of the flat original spacetime the matter is “created” due to work done by the conformal transformation to bend the spacetime which was originally flat. We discuss how to construct the conformally invariant gravity theories and also find the conformal transformation rules for the curvature invariants R2, RabRab, RabcdRabcd and the Gauss‐Bonnet invariant in a spacetime of an arbitrary dimension. Finally, we present the conformal transformation rules in the fashion of the duality transformations of the superstring theory. In such a case the transitions between conformal frames reduce to a simple change of the sign of a redefined conformal factor.  相似文献   

10.
An originally massless quark flavour multiplet in QCD can be split on masses by a nonsimply connected spacetime topology if the quark flavours are associated with spin structures on the given spacetime. This mechanism is described by the example of spacetime with topology S1 × R3 and flat metric. The possible applications are also discussed.  相似文献   

11.
I take non-locality to be the Michelson–Morley experiment of the early 21st century, assume its universal validity, and try to derive its consequences. Spacetime, with its locality, cannot be fundamental, but must somehow be emergent from entangled coherent quantum variables and their behaviors. There are, then, two immediate consequences: (i). if we start with non-locality, we need not explain non-locality. We must instead explain an emergence of locality and spacetime. (ii). There can be no emergence of spacetime without matter. These propositions flatly contradict General Relativity, which is foundationally local, can be formulated without matter, and in which there is no “emergence” of spacetime. If these be true, then quantum gravity cannot be a minor alteration of General Relativity but must demand its deep reformulation. This will almost inevitably lead to: matter not only curves spacetime, but “creates” spacetime. We will see independent grounds for the assertion that matter both curves and creates spacetime that may invite a new union of quantum gravity and General Relativity. This quantum creation of spacetime consists of: (i) fully non-local entangled coherent quantum variables. (ii) The onset of locality via decoherence. (iii) A metric in Hilbert space among entangled quantum variables by the sub-additive von Neumann entropy between pairs of variables. (iv) Mapping from metric distances in Hilbert space to metric distances in classical spacetime by episodic actualization events. (v) Discrete spacetime is the relations among these discrete actualization events. (vi) “Now” is the shared moment of actualization of one among the entangled variables when the amplitudes of the remaining entangled variables change instantaneously. (vii) The discrete, successive, episodic, irreversible actualization events constitute a quantum arrow of time. (viii) The arrow of time history of these events is recorded in the very structure of the spacetime constructed. (ix) Actual Time is a succession of two or more actual events. The theory inevitably yields a UV cutoff of a new type. The cutoff is a phase transition between continuous spacetime before the transition and discontinuous spacetime beyond the phase transition. This quantum creation of spacetime modifies General Relativity and may account for Dark Energy, Dark Matter, and the possible elimination of the singularities of General Relativity. Relations to Causal Set Theory, faithful Lorentzian manifolds, and past and future light cones joined at “Actual Now” are discussed. Possible observational and experimental tests based on: (i). the existence of Sub- Planckian photons, (ii). knee and ankle discontinuities in the high-energy gamma ray spectrum, and (iii). possible experiments to detect a creation of spacetime in the Casimir system are discussed. A quantum actualization enhancement of repulsive Casimir effect would be anti-gravitational and of possible practical use. The ideas and concepts discussed here are not yet a theory, but at most the start of a framework that may be useful.  相似文献   

12.
We give all exact solutions of the Einstein–Gauss–Bonnet Field Equations coupled with a scalar field in four dimensions under certain assumptions. The main assumption we make in this work is to take the second covariant derivative of the coupling function proportional to the spacetime metric tensor. Although this assumption simplifies the field equations considerably, to obtain exact solutions we assume also that the spacetime metric is conformally flat. Then we obtain a class of exact solutions.  相似文献   

13.
Thin-shell wormholes in Einstein-Yang-Mills-dilaton (EYMD) gravity are considered. We show that a non-asymptotically flat (NAF) black hole solution of the d-dimensional EYMD theory provides stable thin-shell wormholes which are supported entirely by exotic matter. The presence of dilaton makes the spacetime naturally NAF, and with our conclusion it remains still open to construct wormholes supported by normal matter between two such spacetimes.  相似文献   

14.
15.
General Relativity obeys the three equivalence principles, the “weak” one (all test bodies fall the same way in a given gravitational field), the “Einstein” one (gravity is locally effaced in a freely falling reference frame) and the “strong” one (the gravitational mass of a system equals its inertial mass to which all forms of energy, including gravitational energy, contribute). The first principle holds because matter is minimally coupled to the metric of a curved spacetime so that test bodies follow geodesics. The second holds because Minkowskian coordinates can be used in the vicinity of any event. The fact that the latter, strong, principle holds is ultimately due to the existence of superpotentials which allow to define the inertial mass of a gravitating system by means of its asymptotic gravitational field, that is, in terms of its gravitational mass. Nordström’s theory of gravity, which describes gravity by a scalar field in flat spacetime, is observationally ruled out. It is however the only theory of gravity with General Relativity to obey the strong equivalence principle. I show in this paper that this remarkable property is true beyond post-newtonian level and can be related to the existence of a “Nordström-Katz” superpotential.  相似文献   

16.
Is Einstein's metric theory of gravitation to be quantized to yield a complete and logically consistent picture of the geometry of the real world in the presence of quantized material sources? To answer this question, we give arguments that there is a consistent way to extend general relativity to small distances by incorporating further geometric quantities at the level of the connection into the theory and introducing corresponding field equations for their determination, allowing thereby the metric and the Levi-Civita connection to remain classical quantities. The dualism between matter and geometry is extended to quantized fields with the help of a Hibert bundle ? raised over a Riemann-Cartan spacetime. Quantized subnuclear matter fields (generalized quantum mechanical wave functions) are sections on ? which determine generalized bilinear currents acting as sourc currents for the bundle geometry at small distances. The established dualism between matter and the underlying bundle geometry contains general relativity as a classical part.  相似文献   

17.
In this paper the R□R term is introduced to a high dimensional spacetime. We obtain various inflations at large R and □R~Rm for all anisotropic Bianchi types except IX. If the dimension of spacetime is larger than 2 but less than 6, the inflation will be inflation of power-law in flat Robertson-Walker metric.  相似文献   

18.
The spacetime metric of a spinning cosmic string may be formally represented in flat spacetime by a nonhomogeneous bianisotropic medium. The constitutive parameters of this bianisotropic medium can be established using a noncovariant formalism, thereby paving the way for laboratory simulations of a spinning cosmic string using metamaterial technology.  相似文献   

19.
It is pointed out that scalar-tensor theories of gravity admit solutions in which the metric is Minkowskian although the scalar and matter fields do not vanish. Explicit pp-wave solutions of the Brans-Dicke-Maxwell theory are presented. These include solutions with metrics that are flat or Ricci flat even though the Maxwell and scalar fields are non-zero.  相似文献   

20.
尘埃粒子的时空结构及其性质   总被引:1,自引:0,他引:1       下载免费PDF全文
陈光 《物理学报》2006,55(4):1539-1542
讨论了尘埃粒子解的时空结构及其性质,导出了尘埃粒子的内空间的离散结构.证明了尘埃粒子内部的物质球是一个无坐标的平直球,因而具有最小的体积和整体的关联性.导出了在尘埃粒子的内外时空中的径向测地线并说明其连续性.阐述了由这个解所揭示的物质、引力与时空之间的内在联系. 关键词: 尘埃粒子 离散时空 测地线  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号