首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spinel CoFe2O4 has been synthesized by combustion reaction technique. X-ray photoelectron spectroscopy shows that samples are near-stoichiometric, and that the specimen surface both in the powder and bulk sample is most typically represented by the formula (Co0.4Fe0.6)[Co0.6Fe1.4]O4, where cations in parentheses occupy tetrahedral sites and those within square brackets in octahedral sites. The results demonstrate that most of the iron ions are trivalent, but some Fe2+ may be present in the powder sample. The Co 2p3/2 peak in powder sample composed three peaks with relative intensity of 45%, 40% and 15%, attributes to Co2+ in octahedral sites, tetrahedral sites and Co3+ in octahedral sites. The O 1s spectrum of the bulk sample is composed of two peaks: the main lattice peak at 529.90 eV, and a component at 531.53 eV, which is believed to be intrinsic to the sample surface. However, the vanishing of the O 1s shoulder peak of the powder specimen shows significant signs of decomposition.  相似文献   

2.
The metal 2p region spectra of the mixed valence spinels, Co3O4, Fe3O4, Mn3O4, and related compounds were studied. The satellite splittings of Co 2p32 for the octahedrally coordinated cobaltous ions are 6.2 eV and those for the tetrahedrally coordinated ones are about 5.3 eV. The Co 2p spectrum for Co3O4 is considered to be the sum of spectra of magnetic cobaltous ions and low-spin cobaltic ions. In the cases of Fe3O4 and Mn3O4, the oxidation states were not clearly distinguished because both the divalent and trivalent ions of iron and manganese are high-spin.  相似文献   

3.
The dielectric properties of LiMn2O4, LiMn1.6Ti0.4O4 and LiMn1.5Ni0.5O4 powders, synthesized by sol-gel method, were determined by analyzing the low-loss region of the electron energy-loss spectroscopy (EELS) spectrum in a transmission electron microscope. From these data, the optical joint density of states (OJDS) was obtained by Kramers-Kronig analysis. Since maxima observed in the OJDS spectra are assigned to interband transitions above the Fermi level, these spectra can be interpreted on the basis of calculated density of states (DOS), carried out with the CASTEP code. Experimental and theoretical results are in good agreement.  相似文献   

4.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

5.
Electronic structure calculations were performed for ZnV2O4, a material close to a metal-insulator transition. Structural optimization leads to the formation of V-V dimers along the off-plane chains. A strong spin-lattice coupling is expected close to the transition to itinerancy. No orbital ordering is observed in such a structure, and the experimentally found magnetic structure is naturally explained.  相似文献   

6.
Total and partial densities of states of the constituent atoms of ZrTiO4 and HfTiO4 titanates have been calculated using a self-consistent cluster method as incorporated in the FEFF8 code. The calculations reveal the similarity of the electronic structure of both titanates and indicate that the valence band of the compounds under consideration is dominated by contributions of O 2p states. These states contribute throughout the whole valence-band region; however their maximum contributions occur in the upper portion of the band. Other significant contributors in the valence-band region are Ti 3d and Zr 4d states in ZrTiO4 and Ti 3d and Hf 5d states in HfTiO4. All the above d-like states contribute throughout the whole valence-band region of the titanates; however maximum contributions of the Ti 3d states occur in the upper portion, whilst those of the Zr 4d (Hf 5d) states are in the central portions of the valence band. The FEFF8 calculations render that the bottom of the conduction band of ZrTiO4 and HfTiO4 is dominated by contributions of Ti 3d? states, with also smaller contributions of Zr 4d?/Hf 5d? and O 2p? states. To verify the above FEFF8 data, the X-ray emission bands, representing the energy distributions of mainly O 2p, Ti 3d and Zr 4d states, were measured and compared on a common energy scale. These experimental data are found to be in agreement with the theoretical FEFF8 results for the electronic structure of ZrTiO4 and HfTiO4 titanates. Additionally, X-ray photoelectron valence-band and core-level spectra were recorded for the constituent atoms of the titanates under study.  相似文献   

7.
The vacuum ultraviolet spectroscopy of Pr3+ doped CaAl4O7, LaMgAl11O19 and SrLaAlO4 is reported. It appears that whenever the aluminate host lattice is excited directly, mainly exciton and 4f2–4f2 [3P0] Pr3+ emission are observed. When the excitation energy is lower, Pr3+ ions are excited selectively and 4f5d–4f2 emission dominates. These observations can be explained by assuming that energy transfer from the host lattice to the Pr3+ ion takes place preferentially via an intermediate exciton state with an energy too low to reach the energetic Pr3+ 4f5d excited states.  相似文献   

8.
The electronic structure of Al2O3 has been studied by electron energy loss spectroscopy (ELS), and an energy level model of both filled and empty states has been constructed from the ELS and available optical data. For the high temperature pyrolytic α-polycrystalline Al2O3 films, the transitions are assumed to originate at the two principal peaks in the valence band density of states and the O(2s) core state, and to terminate on two peaks within the conduction band density of states. We also report energy loss spectra due to excitations out of the deeper Al(2p), Al(2s), Al(1s), and O(1s) core levels. The excitations originating at the Al(2p), Al(2s), and Al(1s) core levels terminate on levels in the conduction band and on an exciton lying about 1 eV below the conduction-band edge.  相似文献   

9.
Magnetic measurements have been performed on polycrystalline solid solutions CoxZn1?xRh2O4 with a spinel structure. The samples with 0.50? x ? 1.00 are antiferromagnets. The samples with x?0.40 do not show a magnetic order, and their magnetic behavior can be explained taking into account the presence of finite clusters of Co2+ ions and paramagnetic isolated ions.  相似文献   

10.
We have calculated the band structure of Ca3Co2O6 and Ca3CoNiO6 by using the self-consistent full-potential linearized augmented plane-wave method within density function theory and the generalized gradient approximation for the exchange and correlation potential. The spin-orbit interaction is incorporated in the calculations using a second variational procedure. The relation of these band structure calculations to thermoelectric transport is discussed. The results illustrate that transport is highly anisotropic with much larger mobility in the a-b plane than out of the a-b plane, and the introduction of Ni in Ca3Co2O6 alters its electronic structure and its thermoelectric transport properties.  相似文献   

11.
The linear absorption of CO2 laser radiation in SF6, WF6, and UF6 has been measured by using optoacoustic detection techniques. Absolute absorption coefficients per Torr as low as 1 × 10?7 cm?1 Torr?1 in a 2-cm active path length could be measured by taking advantage of calibration measurements performed with SF6.  相似文献   

12.
By means of neutron diffraction we found for MnTa2O6S1S2 S3S4 with a magnetic unit which is the same as the chemical. Whereas the chemical unit of CoNb2O6 is doubled in c-direction; all spins in the chemical unit are parallel. Therefore the orthorhombic symmetry of the crystal structure cannot be maintained. In both compositions are the spins parallel to the a-axis.  相似文献   

13.
Sm3+ doped CaO-MgO-Al2O3-SiO2 glass and glass ceramics have been prepared. The diopside crystal (CaMgSi2O6) was identified in the glass ceramics by X-ray diffraction analysis. X-ray photoelectron spectra of the glass and glass ceramics were measured by a monochromatised Al-Kα XPS instrument. Sm 3d core level spectra for the Sm doped samples showed that Sm ions are predominantly in the Sm (III) state in glass and glass ceramics. The O 1s core spectra could be fitted by summing the contributions from bridging oxygen (BO) and non bridging oxygen (NBO) for samarium undoped glass, BO, NBO and Si-O-Sm for the doped glass. The O 1s XPS spectrum of undoped glass ceramics was curve fitted with BO and NBO in glass phase, as well as SiOSi, SiOMg and SiOCa in diopside. In addition to the five components above mentioned, SiOSm in diopside also appeared in O 1s XPS spectra of samarium doped glass ceramics. According to the fitting results, we demonstrate that the Sm2O3 exist in glass network as a glass modifier. After heat treatment, nearly all the Sm3+ existed in diopside phase as the substitution for Ca2+.  相似文献   

14.
The non-isothermal decomposition of NiC2O4·2H2O-FeC2O4·2H2O (1:2 mole ratio) mixture was studied on heating to the formation of NiO-Fe2O3 mixture at 350 °C in air atmosphere using thermogravimetry. Kinetic analysis of data according to the integral composite method showed that the oxidative decomposition of FeC2O4 and NiC2O4 are best described by the three-dimensional phase boundary model. The activation parameters were calculated and discussed. The solid products at different decomposition stages were identified using XRD, Mössbauer and FT-IR spectroscopic techniques. Some characteristic XRD lines of NiFe2O4 start to appear at 800 °C beside the characteristic lines of NiO and Fe2O3, whereas at 1000 °C, only the characteristic lines of single phase cubic NiFe2O4 appeared. The Mössbauer spectrum at 1000 °C fitted into two Zeeman sextets characteristic of Fe3+ on the tetrahedral (A) and octahedral (B) sites of NiFe2O4 inverse spinel. Consistent results were obtained using FT-IR where the absorption bands appeared at 602 and 407 cm−1 for the mixture calcined at 1000 °C. These can be assigned to the intrinsic vibrations of tetrahedral and octahedral sites of NiFe2O4, respectively.  相似文献   

15.
Co-doped ZnO-Ga2O3-SiO2 nano-glass-ceramic composites were prepared by sol-gel method. X-ray diffraction patterns showed that the crystallization temperature was 800 °C. X-ray photoelectron spectroscopy (XPS) was used to study the effect of heat-treatment temperature on the electronic structure of Co-doped ZnO-Ga2O3-SiO2 nano-glass-ceramic composites. The Zn (2p3/2), Ga (2p3/2) and O (1s) XPS spectra for the glass-ceramics heat-treated at 800-1000 °C could be deconvoluted into two peaks corresponding to these elements in glass network and in nanocrystals, respectively. The results indicate that the material is composed of an amorphous silicate network and ZnGa2O4 nanocrystalline particles. The amount of nanocrystals increases with the annealing temperature. The photoelectron peak of Si (2p) shifts to higher binding energy at higher annealing temperature, revealing the charge transfer from Si to O increased. The relationship between the microstructure of Co-doped ZnO-Ga2O3-SiO2 sample and its absorption properties was discussed, and the suitable heat-treatment temperature was proposed.  相似文献   

16.
A detailed study of the in-plane magnetotransport properties of spin valves with one and two Fe3O4 electrodes is presented. Fe3O4/Au/Fe3O4 spin valves exhibit a clear anisotropic magnetoresistance in small magnetic fields but no giant magnetoresistance (GMR). The absence of GMR in these structures is due to simultaneous magnetization reversal in the two Fe3O4 layers. By contrast, a negative GMR effect is measured on Fe3O4/Au/Fe spin valves. The negative GMR is attributed to an electron spin scattering asymmetry at the Fe3O4/Au interface or an induced spin scattering asymmetry in the Au interfacial layers.  相似文献   

17.
The core level electron spectra of CO2, CS2 and COS excited by Mg Kα radiation have been studied to identify shake-up satellite lines associated with ionization from these levels. A number of such lines have been seen and possible assignments have been suggested using the excited states of the molecule as a guide. The valence spectra have also been recorded and they too were found to be rich in shake-up structure. The observed variation of the valence line intensities is discussed and compared with predictions made from an intensity model. The validity of distinguishing between π and σ symmetries in linear molecules in applying the intensity model is confirmed.  相似文献   

18.
We discuss here the results and the interpretation in the crystalline-field approach of some Mössbauer experiments on Fe2+ ions in the spinels GeFe2O4, GeCo2O4 and GeNi2O4. Once the sign of the quadrupolar interaction e2qQ has been deduced from a magnetic spectrum, the thermal variation of e2qQ may be used for determining the electronic level scheme of the Fe2+ ion (including the energies and wavefunctions of the levels). Then we may predict the form and magnitude of the spin hamiltonian, of the magnetic anisotropy and of the hypefine field tensor. Below TN the experimental results are expressed in terms of a molecular-field, the eventual variations of which have been studied in magnitude and in orientation; by using the same calculation for the three compounds, we obtained a reasonable agreement between the experimental and calculated values of the hyperfine field at 0°K.  相似文献   

19.
Single crystals of CdSnO3, Cd2SnO4, ln2TeO6 and CdIn2O4 were grown by either flux or high pressure methods. High electrical conductivity resulted from chemical substitution or oxygen deficiency. Crystallographic and conductivity data are given.  相似文献   

20.
An in-situ Raman spectroscopic study was conducted to explore the pressure induced phase transformation of spinel-type ferrite ZnFe2O4. Results indicate that ferrite ZnFe2O4 initially transforms to an orthorhombic structure phase (CaFe2O4-polymorph) at a pressure of 24.6 GPa. Such a phase transformation is complete at 34.2 GPa, and continuously remains stable to the peak pressure of 61.9 GPa. The coexistence of the two phases over a wide range of pressure implies a sluggish mechanism upon the spinel-to-orthorhombic phase transition. Upon release of pressure, the high pressure ZnFe2O4 polymorph is quenchable at ambient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号