首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A method is developed to incorporate europium into Mg–Al hydrotalcites, which are precursors for oxide catalysts of oxidative dehydrogenation (ODH) of alkanes; samples of oxide catalysts are prepared, where europium oxide and gallium, magnesium, aluminum, chromium, vanadium, molybdenum, and niobium oxides are contained in various combinations. The catalytic properties of these catalysts in the reactions of ethane, propane, and butane ODH are studied. The incorporation of europium into some of our studied multicomponent catalysts enhances the reaction selectivity and increases yields of desired products.  相似文献   

2.
A method is developed for incorporating praseodymium into magnesium–aluminum hydrotalcites, which are precursors for oxide catalysts for oxidative dehydrogenation (ODH) of alkanes. Oxide catalyst samples that contain praseodymium and various combinations of magnesium, aluminum, chromium, vanadium, molybdenum, and niobium are prepared. The catalytic properties of the prepared catalysts in ethane, propane, and butane ODH reactions are studied. Into some of our studied multicomponent catalysts, the incorporation of praseodymium enhances the reaction selectivity and increases yields of desired products.  相似文献   

3.
A method is developed for inserting ytterbium into Mg–Al hydroxo salts that have a hydrotalcitetype layered structure, as well as for the chemical analyses of complex hydroxo salts containing ytterbium in various combinations with magnesium, aluminum, chromium, vanadium, molybdenum, and niobium. The formation conditions of these hydroxo salts have been studied by potentiometric titration, their samples have been prepared, and X-ray diffraction patterns recorded. The prepared hydroxo salt samples have been tested as precursors for oxide catalysts of oxidative dehydrogenation (ODH) of alkanes.  相似文献   

4.
Oxide catalyst samples for the oxidative dehydrogenation (ODH) of alkanes were prepared by heat treatment of precursors, namely, hydrotalcite-related magnesium aluminum double hydroxo salts containing ytterbium, as well as magnesium, aluminum, chromium, vanadium, molybdenum, and niobium in various combinations. Their catalytic activities were studied. Some catalysts were found to have high efficiency in ODH of ethane, propane, and isobutane, increasing the product yield and enhancing the reaction selectivity.  相似文献   

5.
The oxidative dehydrogenation (ODH) of isobutane over pure ceria and phosphated ceria catalysts, containing two different amounts of phosphorus, was examined at temperatures ranging from 450 to 610 °C. The catalysts were characterized using nitrogen adsorption, DRX, SEM, EDX, XPS and TPR techniques. Adding phosphorus to ceria and increasing the phosphorus content results in a modification of the physicochemical characteristics of the catalyst, the redox ability of the catalytic material being strongly diminished. At the same time, by adding phosphorus to ceria and increasing the phosphorus content, a decrease of the catalytic activity accompanied by an important increase of the selectivity for isobutene, mainly at the expense of carbon oxides, was observed. A compensation effect in catalysis was also observed for the isobutane conversion on this series of catalysts.  相似文献   

6.
《Comptes Rendus Chimie》2017,20(1):30-39
Ni and/or Co molybdate based catalysts were synthetized by co-precipitation for the oxidative dehydrogenation of ethane reaction. The catalysts were characterized by several techniques such TGA-DTA, HT-XRD, XRD, LRS, N2 adsorption, XPS and TPR. The results showed that the addition of Ni or Co to MMoO4matrices (M=Ni or Co) led to a high dispersion of additives into the molybdenum matrix without the formation of a significant amount of other bulk metal oxides. Compared to the pure MMoO4, the modified molybdenum (Ni0.5Co0.5MoO4) presents a higher thermal stability (up to 1000 °C). It has a lower BET surface area and higher reduction temperature compared to those of the NiMoO4 sample. In the ODH of ethane, Ni0.5Co0.5MoO4 shows a lower catalytic activity compared to that of MMoO4 samples; however, the ethylene selectivity is enhanced (exceeding 90%). As a result, these series of catalysts show improved efficiency for ethylene production in the ethane ODH reaction.  相似文献   

7.
闫冰  陆文多  盛健  李文翠  丁鼎  陆安慧 《催化学报》2021,42(10):1782-1789
乙烯和丙烯等低碳烯烃是重要的基础有机化工产品,广泛应用于化工生产的各个领域.相比于其他工艺,低碳烷烃氧化脱氢制烯烃工艺具有不受热力学平衡限制、无积炭等特点而被广泛研究.近年发现六方氮化硼(h-BN)、硼化硅(SiB6)和磷酸硼(BPO4)等非金属硼基催化剂能够高效催化烷烃氧化脱氢反应,并抑制产物烯烃的过度氧化,表现出高的催化活性和烯烃选择性.大量的研究表明,硼基催化剂活性起源于催化剂表面的"BO"物种(如B-O和B-OH等基团).氧化硼(B2O3)作为一种氧化气氛中化学性质稳定的含硼化合物,兼具丰富的"BO"位点,在反应条件下可形成多种结构以适用不同的化学环境,为制备高效的烷烃氧化脱氢催化剂提供了可能.在之前的研究中,多将B2O3浸渍在常规的TiO2,SiO2,A12O3等三维多孔载体上用于氧化脱氢反应.考虑到B2O3结构的灵活性和易于成键特性,需开发更为有效的合成策略,以提升B2O3催化剂在氧化脱氢反应中的活性和稳定性.本文采用静电纺丝技术合成了直径为100~150 nm的多孔掺硼二氧化硅纳米纤维(PBSN)用于低碳烷烃氧化脱氢反应.静电纺丝法合成的催化剂中硼物种在开放的氧化硅纤维骨架上均匀分散且稳定固载.一维纳米纤维结构不仅有利于扩散,且赋予催化剂在高重时空速(WHSV)条件下优异的烷烃氧化脱氢反应活性.在乙烷氧化脱氢反应中,当乙烷的转化率达到44.3%时,乙烯的选择性和产率分别为84%和44.2 μmol gcat-1 s-1.而在丙烷脱氢反应中,当丙烷转化率为19.2%时,总烯烃选择性及丙烯产率分别为90%和76.6 μmol gcat-1 s-1.在温度为545 ℃,丙烷WHSV高达84.6 h-1的条件下,催化剂保持长时间稳定.与其他负载型氧化硼催化剂相比,PBSN催化剂具有更高的烯烃选择性和稳定性.研究表明,在氧化硅负载B2O3催化剂催化丙烷氧化脱氢反应中,载体中Si-OH基团的存在可能会降低丙烯的选择性.瞬态分析和动力学实验表明,硼基催化剂催化烷烃氧化脱氢反应过程中O2的活化受到烷烃的影响.本文不仅为高效硼基催化剂的合成提供了新思路,也为深入理解该类催化剂上烷烃氧化脱氢反应过程提供了实验支撑.  相似文献   

8.
On the basis that thiacalix[4]arene (H(4)T4A) complex (PPh(4) )(2) [H(2)T4A(VO(2))](2) (Ia) was found to be an adequate functional model for surface species occurring on vanadium oxide based catalysts and itself catalyses the oxidative dehydrogenation (ODH) of alcohols, an analogue containing 2,2'-thiobis(2,4-di-tert-butylphenolate), (S)L(2-), as ligand, namely, (PPh(4))(2)[(S)LVO(2)](2) (II) was investigated in the same context. Despite the apparent similarity of Ia and II, studies on II revealed several novel insights, which are also valuable in connection with surfaces of vanadia catalysts: 1) For Ia and II similar turnover numbers (TONs) were found for the ODH of activated alcohols, which indicates that the additional OH units inherent to Ia do not contribute particularly to the activity of this complex, for instance, through prebinding of the alcohol. 2) On dissolution II enters into an equilibrium with a monomeric form, which is the predominant species in solution; nevertheless, ODH proceeds exclusively at the dimeric form, and this stresses the need for cooperation of two vanadium centres. 3) By omitting O(2) from the system during the oxidation of 9-fluorenol, the reduced form of the catalyst could be isolated and fully characterised (including single-crystal X-ray analysis). The corresponding intermediate had been elusive in case of thiacalixarene system Ia. 4) Reoxidation was found to proceed via a peroxide intermediate that also oxidises one alcohol equivalent. As the peroxide can also perform mono- and dioxygenation of the thioether group in II, after a number of turnovers the active catalyst contains a sulfone group. The reduced form of this ultimate catalyst was also isolated and structurally characterised. Possible implications of 1)-4) for the function of heterogeneous vanadia catalysts are discussed.  相似文献   

9.
1,3-Butadiene, an important raw material for a variety of chemical products, can be produced via the oxidative dehydrogenation (ODH) of n-butenes over multicomponent oxide catalysts based on bismuth molybdates and ferrites. In this review, the basic concept, reaction mechanism, and catalysts typically used in an ODH reaction are discussed.  相似文献   

10.
Catalytic performance of phosphate-modified carbon nanotube(PoCNT) catalysts for oxidative dehydrogenation(ODH) of n-butane has been systematically investigated. The Po CNT catalysts are characterized by SEM, TEM, XPS and TG techniques. We set the products selectivity as a function of butane conversion over various phosphate loading, and it is found that the PoCNT catalyst with the 0.8% phosphate weight loading(0.8PoCNT) exhibits the best catalytic performance. When the phosphate loading is higher than 0.8 wt%, the difference of catalytic activity among the PoCNT catalysts is neglectable. Consequently, the ODH of n-butane over the 0.8PoCNT catalyst is particularly discussed via changing the reaction conditions including reaction temperatures, residence time and n-butane/O_2 ratios. The interacting mechanism of phosphate with the oxygen functional groups on the CNT surface is also proposed.  相似文献   

11.
Mn-Al和Cu-Mn-Al复合氧化物催化苯甲醇选择氧化反应   总被引:3,自引:3,他引:0  
吴藏藏  郑丽  徐秀峰 《分子催化》2016,30(6):532-539
用溶胶-凝胶法制备了不同组成的Mn-Al和Cu-Mn-Al复合氧化物两组催化剂,用于苯甲醇选择氧化反应.用X射线衍射(XRD)、N2物理吸附(BET)、扫描电镜(SEM)、H_2程序升温还原(H_2-TPR)、O_2程序升温脱附(O_2-TPD)和X射线光电子能谱(XPS)技术对催化剂进行了结构表征,考察了催化剂组成对催化活性的影响.结果表明:以甲苯为溶剂,O_2为氧化剂,353 K反应5 h,Mn_2Al和Cu_(0.3)Mn_(0.7)Al_2催化剂上的苯甲醇转化率分别为36.6%和40.9%,苯甲醛选择性均为100%.进一步研究表明:催化剂活性与其H2还原性和O_2吸附性有关,高活性的催化剂吸附氧多,生成的活性氧易参与反应.  相似文献   

12.
A series of BiMoFe0.65P x oxide catalysts with varying phosphorous contents from 0.0 to 0.6 mol ratio were prepared by a co-precipitation method, and oxidative dehydrogenation (ODH) was carried out to produce 1,3-butadiene (BD) from n-butenes. The physico-chemical properties of the oxide catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 sorption, and NH3 and 1-butene temperature-programmed desorption (TPD). Among the catalysts studied here, BiMoFe0.65P0.1 oxide catalyst showed the highest conversion and selectivity to BD. From the result of 1-butene TPD, the higher catalytic activity is related to the amount of weakly bounded intermediate and the desorbing temperature of strongly bounded intermediates. Also, the higher catalytic activity likely originates from the acidity of the BiMoFe0.65P0.1 oxide catalyst; its acidity was higher than that of phosphorous-free oxide catalyst and further contained other oxide catalysts. BiMoFe0.65P0.1 oxide catalyst is stable and no significant deactivation for 100 h ODH reaction was shown.  相似文献   

13.
Citrate method is broadly used for the preparation of mixed oxides and their highly dispersive pure phases[1]. Up to now, most of the mixed oxides are prepared from putting the related chemical compounds together and sintering the mixture at high temperature, while the complexes formed during this process are uncertain. This will limit the design of high dispersibility and the purities of the resulted mixed oxides. Vanadium-based oxides are catalysts used in the partial oxidation of propane and butane. It has been demonstrated previously that the vanadium citrate complex with well-defined composition and structure is the better precursors for the preparation of V-based mixed oxide[2], Using the precursor of barium dimeric(citrato) oxovanadium(IV) tetrahydrates Ba2[VO(cit)]2·4H2O, barium pyrovanadate may be prepared with pre-determinated compositions and higher purities from thermal decomposition of the well-defined complexes at lower temperature.  相似文献   

14.
Physical and chemical insights into the nature and quantity of the active sites and the intrinsic catalytic activity of nanocarbon materials in alkane oxidative dehydrogenation (ODH) reactions are reported using a novel in situ chemical titration process. A study on the structure–function relationship reveals that the active sites are identical both in nature and function on various nanocarbon catalysts. Additionally, the quantity of the active sites could be used as a metric to normalize the reaction rates, and thus to evaluate the intrinsic activity of nanocarbon catalysts. The morphology of the nanocarbon catalysts at the microscopic scale exhibits a minor influence on their intrinsic ODH catalytic activity. The number of active sites calculated from the titration process indicates the number of catalytic centers that are active (that is, working) under the reaction conditions.  相似文献   

15.
张胜红  张鸿鹏  孙吉莹  刘海超 《催化学报》2010,31(11):1374-1380
 以 MgO 修饰的 SBA-15 为载体, 采用浸渍法制备了负载 β-Mg2V2O7 催化剂, 并运用 X 射线衍射、拉曼光谱、紫外-可见漫反射光谱和 H2 程序升温还原等技术对催化剂 V 中心的结构和还原性能进行了表征. 结果表明, β-Mg2V2O7 具有与 α-Mg2V2O7 相同的结构单元, 但其催化丙烷氧化脱氢 (ODH) 反应的初始活性和初始选择性均低于后者. 与体相 β-Mg2V2O7 相比, 负载的 β-Mg2V2O7 上 V 中心分散度以及丙烷 ODH 反应活性和选择性更高, 520 oC 时丙烷 ODH 反应的初始活性提高了约 20 倍, 丙烯初始选择性也从体相的 88.3% 提高到 94.1%, 接近于 α-Mg2V2O7 (94.6%), 并且在 20% 的丙烷转化率时也表现出相似的规律. 这与表征催化剂选择性的两个本征动力学参数 k1/k2 (丙烷初级 ODH 和燃烧反应速率常数之比) 和 k3/k1 (次级丙烯燃烧和初级丙烷 ODH 反应速率常数之比) 反映出的规律一致. 这些对体相和负载的 Mg2V2O7 催化剂催化丙烷 ODH 反应本征特性的认识将有助于设计合成更高效的 Mg-V-O 催化剂, 如基于 α-Mg2V2O7 结构的高分散催化剂, 以获得更高的丙烷 ODH 反应活性和选择性.  相似文献   

16.
Boron-containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron-containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2(OH)xO(3−x/2) (x=0–6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM-22 isomorphously substituted with boron (B-MWW). Using 11B solid-state NMR spectroscopy, we show that the majority of boron species in B-MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B-MWW for ODH of propane falsifies the hypothesis that site-isolated BO3 units are the active site in boron-based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium-based catalysts and provides an important piece of the mechanistic puzzle.  相似文献   

17.
ZrO2—SiO2负载Cu—Ni催化剂的CO2加氢反应性能   总被引:7,自引:0,他引:7  
采用表面反应改性法,制备了ZrO2-SiO2(ZrSiO)表面复合物载体,用等体积浸渍法制备了ZrSiO担载的Cu-Ni双金属催化剂,借助BET、TPR、IR和微反等技术,研究了ZrSiO及其负载的Ni、Cu双金属催化剂的表面构造,化学吸附及催化CO2加氢的反应性能,结果表明,ZrSiO表面主要是价联型结构,ZrO2引入SiO2表面,可以有效地促进CuO和NiO的还原,在ZrSiO负载的Cu-Ni催化剂表面的Cu或Ni位,CO2发生化学 吸附形成线、剪式、卧式吸附态,在该催化剂上CO2的加氢反应产物主要是CH3OH3、CH4、CO和H2O生成CH3OH的选择性与催化剂组成及反应条件密切相关,在适当的条件,CH3OH的选择性大于90%。  相似文献   

18.
Hydrogenation of cyclohexene has been studied under pressure in a flow reactor on the following catalysts: Na- and H-forms of Y-type zeolites, erionite, magnesium and lanthanum oxides, palladium on silica and aluminum oxide. This reaction is accompanied by skeletal isomerization to give methylcyclopentane and methylcyclopentenes. The differences in activation energies for isomerization and hydrogenation reactions were estimated as 83–96 kJ/mole for NaY and Na,K-erionite, 33–50 kJ/mole for the H-forms of the zeolites, 33–37 kJ/mole on the Pd catalysts, and 25–33 kJ/mole on magnesium and lanthanum oxides. It is suggested that the cyclohexyl complex, formed as an intermediate during hydrogenation of cyclohexene on Na-forms of the zeolites, is neither a carbocation nor a radical.Deceased.N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 117913. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 4, pp. 791–799, April, 1992.  相似文献   

19.
Boron‐containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron‐containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2(OH)xO(3?x/2) (x=0–6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM‐22 isomorphously substituted with boron (B‐MWW). Using 11B solid‐state NMR spectroscopy, we show that the majority of boron species in B‐MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B‐MWW for ODH of propane falsifies the hypothesis that site‐isolated BO3 units are the active site in boron‐based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium‐based catalysts and provides an important piece of the mechanistic puzzle.  相似文献   

20.
Nanocrystalline metal oxides, MgO, CuO, ZnO, TiO2 as catalysts or catalyst supports have been received much attention in the recent years, especially nanocrystalline magnesium oxide (NAP-MgO) has been used as a recyclable catalyst for Wittig, Wadsworth–Emmons, aza-Michael, Baylis–Hillman, Strecker, Aldol, Claisen-Schmidt condensation and other useful organic reactions. In general, it is reported that nanocrystalline magnesium oxide shows better activity in many organic reactions. These high reactivities are due to high surface areas combined with unusually reactive morphologies. The nanomaterials were also explored as supports to make supported metal catalysts for the organic reactions. The higher activity of these catalysts was studied partly to understand the mechanism of the reaction, the putative reaction pathways were preliminarily presented with the help of spectroscopic support, XPS, silicon, and phosphorus NMR spectroscopy. The catalysts are recovered and reused for several cycles. These catalytic systems are expected to contribute to the development of benign chemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号