首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Two new coordination compounds of cadmium with HF and XeF2 as ligands have been synthesized. Solid white [Cd(HF)](AsF6)2 is obtained from an anhydrous HF (aHF) solution of Cd(AsF6)2. It crystallizes in a monoclinic P2(1)/c space group with a = 9.4687(14) A, b = 9.2724(11) A, c = 10.5503(18) A, beta = 104.887(7) degrees, and Z = 4. The coordination sphere of Cd consists of 7 + 2 fluorine atoms, which are in a capped trigonal-prismatic arrangement. The reaction between Cd(AsF6)2 and XeF(2 in aHF yields a solid white product at room temperature having the composition [Cd(XeF2)4](AsF6)2 after the excess XeF2 and solvent have been removed under dynamic vacuum. [Cd(XeF2)4](AsF6)2 crystallizes in the orthorhombic space group P2(1)2(1)2(1), with a = 8.6482(6) A, b = 13.5555(11) A, c = 16.6312(14) A, and Z = 4. The coordination sphere of Cd consists of eight fluorine atoms, which are at the corners of a trigonal prism with two capped side faces.  相似文献   

2.
The reaction between Mg(AsF(6))(2) and XeF(2) in anhydrous HF (aHF) at room temperature yields two compounds with XeF(2) bonded directly to the Mg(2+) cation: [Mg(XeF(2))(4)](AsF(6))(2); [Mg(XeF(2))(2)](AsF(6))(2). The 1:4 compound is obtained with excess XeF(2) while the 1:2 compound is prepared from stoichiometric amounts of Mg(AsF(6))(2) and XeF(2). [Mg(XeF(2))(4)](AsF(6))(2) crystallizes in an orthorhombic crystal system, space group P2(1)2(1)2(1), with a = 8.698(15) A, b = 14.517(15) A, c = 15.344(16) A, V = 1937(4) A(3), and Z = 4. The octahedral coordination sphere of Mg consists of one fluorine atom from each of the four XeF(2) molecules and two fluorine atoms from the two AsF(6) units. [Mg(XeF(2))(2)](AsF(6))(2) crystallizes in the orthorhombic crystal system, space group Pbam, with a = 8.9767(10) A, b = 15.1687(18) A, c = 5.3202(6) A, V = 724.42(14) A(3), and Z = 2. The octahedral coordination sphere consists of two fluorine atoms, one from each of the two XeF(2) molecules and four fluorine atoms from the four bridging AsF(6) units.  相似文献   

3.
The coordination compounds [Mg(XeF(2))(2)][AsF(6)](2), [Mg(XeF(2))(4)][AsF(6)](2), [Ca(XeF(2))(2.5)][AsF(6)](2), [Ba(XeF(2))(3)][AsF(6)](2), and [Ba(XeF(2))(5)][AsF(60](2) were characterized by solid-state (19)F and (129)Xe magic-angle spinning NMR spectroscopy. The (19)F and (129)Xe NMR data of [Mg(XeF(2))(2)][AsF(6)](2), [Mg(XeF(2)(4)][AsF(6)](2), and [Ca(XeF(2))(2.5)][AsF(6)](2) were correlated with the previously determined crystal structures. The isotropic (19)F chemical shifts and (1)J((129)Xe-(19)F) coupling constants were used to distinguish the terminal and bridging coordination modes of XeF(2). Chemical-shift and coupling-constant calculations for [Mg(XeF(2))(4)][AsF(6)](2) confirmed the assignment of terminal and bridging chemical-shift and coupling-constant ranges. The NMR spectroscopic data of [Ba(XeF(2))(3)][AsF(6)](2) and [Ba(XeF(2))(5)][AsF(6)](2) indicate the absence of any terminal XeF(2) ligands, which was verified for [Ba(XeF(2))(5)][AsF(6)](2) by its X-ray crystal structure. The adduct [Ba(XeF(2))(5)][AsF(6)](2) crystallizes in the space group Fmmm, with a = 11.6604(14) Angstrom, b = 13.658(2) Angstrom, c = 13.7802(17) Angstrom, V = 2194.5(5) Angstrom(3) at -73 degrees C, Z = 4, and R = 0.0350 and contains two crystallographically independent bridging XeF(2) molecules and one nonligating XeF(2) molecule. The AsF(6-) anions in [Mg(XeF(2))(4)][AsF(6)](2), [Ca(XeF(2))(2.5)][AsF(6)](2), [Ba(XeF(2))(3)][AsF(6)](2), and [Ba(XeF(2))(5)][AsF(6)](2) were shown to be fluxional with the fluorines-on-arsenic being equivalent on the NMR time scale, emulating perfectly octahedral anion symmetry.  相似文献   

4.
Pure [Cu(XeF2)2](SbF6)2 was prepared by the reaction of Cu(SbF 6) 2 with a stoichiometric amount of XeF2 in anhydrous hydrogen fluoride (aHF) at ambient temperature. The reaction between Cu(SbF6)2 and XeF2 (1:4 molar ratio) in aHF yielded [Cu(XeF2)4](SbF6)2 contaminated with traces of Xe 2F 3SbF6 and CuF2. The 6-fold coordination of Cu(2+) in [Cu(XeF2)2](SbF6)2 includes two fluorine atoms from two XeF2 ligands and four fluorine atoms provided by four [SbF6](-) anions. The neighboring [Cu(XeF 2)2](2+) moieties are connected via two [SbF6] units, with the bridging fluorine atoms in cis positions, into infinite [Cu(eta(1)-XeF2)2](cis-eta(2)-SbF 6)2[Cu(eta(1)-XeF 2)2] chains. Because of the high electron affinity of Cu(2+), coordinated XeF2 shows the highest distortion (Xe-Fb=210.2(5) pm, Xe-Ft=190.6(5) pm) observed so far among all known [M(x+)(XeF2)n](A)x (A=BF4, PF6, etc.) complexes. The four equatorial coordination sites of the Cu(2+) ion in [Cu(XeF 2) 4](SbF6)2 are occupied by four XeF 2 ligands. Two fluorine atoms belonging to two [SbF6] units complete the Cu (2+) coordination environment. The neighboring [Cu(XeF2)4](2+) species are linked via one [SbF6] unit, with bridging fluorine atoms in trans positions, into linear infinite [Cu(eta(1)-XeF2)4](trans-eta(2)-SbF6)[Cu(eta(1)-XeF2)4] chains. To compensate for the remaining positive charge, crystallographically independent [SbF6](-) anions are located between the chains and are fixed in the crystal space by weak Xe...F(Sb) interactions.  相似文献   

5.
From the system MF(2)/PF(5)/XeF(2)/anhydrous hydrogen fluoride (aHF), four compounds [Sr(XeF(2))(3)](PF(6))(2), [Pb(XeF(2))(3)](PF(6))(2), [Sr(3)(XeF(2))(10)](PF(6))(6), and [Pb(3)(XeF(2))(11)](PF(6))(6) were isolated and characterized by Raman spectroscopy and X-ray single-crystal diffraction. The [M(XeF(2))(3)](PF(6))(2) (M = Sr, Pb) compounds are isostructural with the previously reported [Sr(XeF(2))(3)](AsF(6))(2). The structure of [Sr(3)(XeF(2))(10)](PF(6))(6) (space group C2/c; a = 11.778(6) Angstrom, b = 12.497(6) Angstrom, c = 34.60(2) Angstrom, beta = 95.574(4) degrees, V = 5069(4) Angstrom(3), Z = 4) contains two crystallographically independent metal centers with a coordination number of 10 and rather unusual coordination spheres in the shape of tetracapped trigonal prisms. The bridging XeF(2) molecules and one bridging PF(6)- anion, which connect the metal centers, form complicated 3D structures. The structure of [Pb(3)(XeF(2))(11)](PF(6))(6) (space group C2/m; a = 13.01(3) Angstrom, b = 11.437(4) Angstrom, c = 18.487(7) Angstrom, beta = 104.374(9) degrees, V = 2665(6) Angstrom(3), Z = 2) consists of a 3D network of the general formula {[Pb(3)(XeF(2))(10)](PF(6))(6)}n and a noncoordinated XeF(2) molecule fixed in the crystal structure only by weak electrostatic interactions. This structure also contains two crystallographically independent Pb atoms. One of them possesses a unique homoleptic environment built up by eight F atoms from eight XeF(2) molecules in the shape of a cube, whereas the second Pb atom with a coordination number of 9 adopts the shape of a tricapped trigonal prism common for lead compounds. [Pb(3)(XeF(2))(11)](PF(6))(6) and [Sr(3)(XeF(2))(10)](PF(6))(6) are formed when an excess of XeF(2) is used during the process of the crystallization of [M(XeF(2))(3)](PF(6))(2) from their aHF solutions.  相似文献   

6.
Reactions of XeO2F2 with the strong fluoride ion acceptors, AsF5 and SbF5, in anhydrous HF solvent give rise to alpha- and beta-[XeO2F][SbF6], [XeO2F][AsF6], and [FO2XeFXeO2F][AsF6]. The crystal structures of alpha-[XeO2F][SbF6] and [XeO2F][AsF6] consist of trigonal-pyramidal XeO2F+ cations, which are consistent with an AXY2E VSEPR arrangement, and distorted octahedral MF6- (M = As, Sb) anions. The beta-phase of [XeO2F][SbF6] is a tetramer in which the xenon atoms of four XeO2F+ cations and the antimony atoms of four SbF6- anions are positioned at alternate corners of a cube. The FO2XeFXeO2F+ cations of [FO(2)XeFXeO2F][AsF6] are comprised of two XeO2F units that are bridged by a fluorine atom, providing a bent Xe- - -F- - -Xe arrangement. The angle subtended by the bridging fluorine atom, a xenon atom, and the terminal fluorine atom of the XeO2F group is bent toward the valence electron lone-pair domain on xenon, so that each F- - -XeO2F moiety resembles the AX(2)Y(2)E arrangement and geometry of the parent XeO2F2 molecule. Reaction of XeF6 with [H3O][SbF6] in a 1:2 molar ratio in anhydrous HF predominantly yielded [XeF5][SbF6].XeOF4 as well as [XeO2F][Sb2F11]. The crystal structure of the former salt was also determined. The energy-minimized, gas-phase MP2 geometries for the XeO2F+ and FO2XeFXeO2F+ cations are compared with the experimental and calculated geometries of the related species IO2F, TeO2F-, XeO2(OTeF5)+, XeO2F2, and XeO2(OTeF5)2. The bonding in these species has been described by natural bond orbital and electron localization function analyses. The standard enthalpies and Gibbs free energies for reactions leading to XeO2F+ and FO2XeFXeO2F+ salts from MF5 (M = As, Sb) and XeO2F2 were obtained from Born-Haber cycles and are mildly exothermic and positive, respectively. When the reactions are carried out in anhydrous HF at low temperatures, the salts are readily formed and crystallized from the reaction medium. With the exception of [XeO2F][AsF6], the XeO2F+ and FO2XeFXeO2F+ salts are kinetically stable toward dissociation to XeO2F2 and MF5 at room temperature. The salt, [XeO2F][AsF6], readily dissociates to [FO2XeFXeO2F][AsF6] and AsF5 under dynamic vacuum at 0 degree C. The decompositions of XeO2F+ salts to the corresponding XeF+ salts and O2 are exothermic and spontaneous but slow at room temperature.  相似文献   

7.
A C2-symmetric enantiopure 4,5-bis(pinene)-2,2'-bipyridine ligand (-)-L was used to investigate the diastereoselectivity in the formation of [ML3]2+ coordination species (M = Fe(II), Ru(II), Os(II), Zn(II), Cd(II), Cu(II), Ni(II)), and [ML2Cl2] (M = Ru(II), Os(II)). The X-ray structures of the [ML3]2+ complexes were determined for Delta-[FeL3](PF6)2, Delta-[RuL3](PF6)2, Lambda-[RuL3](PF6)2, Delta-[OsL3](PF6)2, and Lambda-[OsL3](TfO)2. All of these compounds were also characterized by NMR, CD and UV/VIS absorption spectroscopy. The [FeL3]2+ diastereoisomers were studied in equilibrated solutions at various temperatures and in several solvents. The [RuL3]2+ complexes, which are thermally stable up to 200 degrees C, were photochemically equilibrated.  相似文献   

8.
The salt, [F5TeN(H)Xe][AsF6], has been synthesized in the natural abundance and 99.5% 15N-enriched forms. The F5TeN(H)Xe+ cation has been obtained as the product of the reactions of [F5TeNH3][AsF6] with XeF2 (HF and BrF5 solvents) and F5TeNH2 with [XeF][AsF6] (HF solvent) and characterized in solution by 129Xe, 19F, 125Te, 1H, and 15N NMR spectroscopy at -60 to -30 degrees C. The orange [F5TeN(H)Xe][AsF6] and colorless [F5TeNH3][AsF6] salts were crystallized as a mixture from HF solvent at -35 degrees C and were characterized by Raman spectroscopy at -165 degrees C and by X-ray crystallography. The crystal structure of the low-temperature phase, alpha-F5TeNH2, was obtained by crystallization from liquid SO2 between -50 and -70 degrees C and is fully ordered. The high-temperature phase, beta-F5TeNH2, was obtained by sublimation at room temperature and exhibits a 6-fold disorder. Decomposition of [F5TeN(H)Xe][AsF6] in the solid state was rapid above -30 degrees C. The decomposition of F5TeN(H)Xe+ in HF and BrF5 solution at -33 degrees C proceeded by fluorination at nitrogen to give F5TeNF2 and Xe gas. Electronic structure calculations at the Hartree-Fock and local density-functional theory levels were used to calculate the gas-phase geometries, charges, Mayer bond orders, and Mayer valencies of F5TeNH2, F5TeNH3+, F5TeN(H)Xe+, [F5TeN(H)Xe][AsF6], F5TeNF2, and F5TeN2- and to assign their experimental vibrational frequencies. The F5TeN(H)Xe+ and the ion pair, [F5TeN(H)Xe][AsF6], systems were also calculated at the MP2 and gradient-corrected (B3LYP) levels.  相似文献   

9.
Complexes [PF6 subset(Ag3(titmb)2](PF6)2 (8) and {SbF6 subset[Ag3(titmb)2](SbF6)2}.H2O.1.5 CH3OH (9) are obtained by reaction of titmb and Ag+ salts with different anions (PF6(-) and SbF6(-)), and crystal structures reveal that they are both M3L2 cage complexes with short Ag...F interactions between the silver atoms and the fluorine atoms of the anions. In complex 8, a novel cage dimer is formed by weak Ag...F contacts; an unique cage tetramer formed via Ag...pi interactions (Ag...eta5-imidazole) between dimers and an infinite 1D cage chain is presented. However, each of the external non-disordered SbF6(-) anions connect with six cage 9s via Ag...F contacts, and each cage 9 in turn connects with three SbF6(-) anions to form a 2D network cage layer; and the layers are connected by pi-pi interactions to form a 3D network. The anion-exchange reactions of four Ag3L2 type complexes ([BF4 subset(Ag3(titmb)2](BF4)2 (6), [ClO4 subset(Ag3(titmb)2](ClO4)2 (7b), [PF6 subset(Ag3(titmb)2](PF6)2 (8) and [SbF6 subset(Ag3(titmb)2](SbF6)2.1.5CH3OH (9)) with tetrahedral and octahedral anions (ClO4(-), BF4(-), PF6(-) and SbF6(-)) are also reported. The anion-exchange experiments demonstrate that the anion selective order is SbF6(-) > PF6(-) > BF4(-), ClO4(-), and this anion receptor is preferred to trap octahedral and tetrahedral anions rather than linear or triangle anions; SbF6(-) is the biggest and most preferable one, so far. The dimensions of cage complexes with or without internal anions, anion-exchange reactions, cage assembly and anion inclusions, silver(I) coordination environments, Ag-F and Ag-pi interactions of Ag3L2 complexes 1-9 are discussed.  相似文献   

10.
Reactions of Hg(OAc)2 with 2 equiv of TabHPF6 [TabH = 4-(trimethylammonio)benzenethiol] in MeCN/MeOH afforded a mononuclear linear complex [Hg(Tab)2](PF6)2 (1). By using 1 as a precursor, a new family of mercury(II) zwitterionic thiolate complexes, [Hg2(Tab)6](PF6)4.2MeCN (2.2MeCN), [Hg(Tab)2(SCN)](PF6) (3), [Hg(Tab)2(SCN)2] (4), [Hg(Tab)I2] (5), {[Hg(Tab)2]4[HgI2][Hg2I6]}(PF6)2(NO3)4 (6), [Hg(Tab)2][HgI4] (7), [Hg(Tab)2][HgCl2(SCN)2] (8), [Tab-Tab]2[Hg3Cl10] (9), and [Hg2(Tab)6]3(PF6)Cl11 (10), were prepared and characterized by elemental analysis, IR spectra, UV-vis spectra, 1H NMR, and single-crystal X-ray crystallography. The [Hg2(Tab)6]4+ tetracation of 2 or 10 contains an asymmetrical Hg2S2 rhomb with an inversion center lying on the midpoint of the Hg...Hg line. The Hg atom of the [Hg(Tab)2]2+ dication of 3 is coordinated to one SCN-, forming a rare T-shaped coordination geometry, while in 4, the Hg atom of [Hg(Tab)2]2+ is coordinated to two SCN-, forming a seesaw-shaped coordination geometry. Through weak secondary Hg...S coordinations, each cation in 3 is further linked to afford a one-dimensional zigzag chain. The trigonal [Hg(Tab)I2] molecules in 5 are held together by weak secondary Hg...I and Hg...S interactions, forming a one-dimensional chain structure. In 6, the four [Hg(Tab)2]2+ dications, one HgI2 molecule, one [Hg2I6]2- dianion, one PF6-, and four NO3- anions are interconnected by complicated secondary Hg...I and Hg...O interactions, forming a scolopendra-like chain structure. The secondary Hg...I interactions, [Hg(Tab)2]2+ and [HgI4]2- in 7, are combined to generate a one-dimensional chain structure, while [Hg(Tab)2]2+ and [HgCl2(SCN)2]2- in 8 are interconnected by secondary Hg...N interactions to form a one-dimensional zigzag chain structure. Compound 9 consists of two [Tab-Tab]2+ dications and one [Hg3Cl10]4- tetraanion. The facile approach to the construction of 2-8 and 10 from 1 may be applicable to the mimicking of a coordination sphere of the Hg sites of metallothioneins.  相似文献   

11.
The salt, [F3S(triple bond)NXeF][AsF6], has been synthesized by the reaction of [XeF][AsF6] with liquid N(triple bond)SF3 at -20 degrees C. The Xe-N bonded cation provides a rare example of xenon bound to an inorganic nitrogen base in which nitrogen is formally sp-hybridized. The F3S(triple bond)NXeF+ cation was characterized by Raman spectroscopy at -150 degrees C and by 129Xe, 19F, and 14N NMR spectroscopy in HF solution at -20 degrees C and in BrF5 solution at -60 degrees C. Colorless [F3S(triple bond)NXeF][AsF6] was crystallized from HF solvent at -45 degrees C, and its low-temperature X-ray crystal structure was determined. The Xe-N bond is among the longest Xe-N bonds known (2.236(4) A), whereas the Xe-F bond length (1.938(3) A) is significantly shorter than that of XeF2 but longer than in XeF+ salts. The Xe-F and Xe-N bond lengths are similar to those of HC(triple bond)NXeF+, placing it among the most ionic Xe-N bonds known. The nonlinear Xe-N-S angle (142.6(3)o) contrasts with the linear angle predicted by electronic structure calculations and is attributed to close N...F contacts within the crystallographic unit cell. Electronic structure calculations at the MP2 and DFT levels of theory were used to calculate the gas-phase geometries, charges, bond orders, and valencies of F3S(triple bond)NXeF+ and to assign vibrational frequencies. The calculated small energy difference (7.9 kJ mol-1) between bent and linear Xe-N-S angles also indicates that the bent geometry is likely the result of crystal packing. The structural studies, natural bond orbital analyses, and calculated gas-phase dissociation enthalpies reveal that F3S(triple bond)NXeF+ is among the weakest donor-acceptor adducts of XeF+ with an Xe-N donor-acceptor interaction that is very similar to that of HC(triple bond)NXeF+, but considerably stronger than that of F3S(triple bond)NAsF5. Despite the low dissociation enthalpy of the donor-acceptor bond in F3S(triple bond)NXeF+, 129Xe, 19F, and 14N NMR studies reveal that the F3S(triple bond)NXeF+ cation is nonlabile at low temperatures in HF and BrF5 solvents.  相似文献   

12.
The reaction between Ba(SbF(6))(2) and excess XeF(2) in anhydrous HF at room temperature yields the white solid Ba(SbF(6))(2).5XeF(2) after the excess XeF(2) and the solvent have been removed under vacuum. Ba(SbF(6))(2).5XeF(2) crystallizes in the monoclinic space group C2/m, with a = 13.599(6) A, b = 12.086(4) A, c = 9.732(5) A, beta = 134.305(6) degrees, V = 1144.7 (8) A(3), and Z = 2. The coordination sphere of each barium atom consists of 12 fluorine atoms. The structure consists of alternating layers of Ba(SbF(6))(2).XeF(2) and 4 XeF(2) molecules. The Ba atoms in the Ba(SbF(6))(2).XeF(2) layer are in a nearly rhombic-net array and are linked with trans F-bridging ligands of SbF(6)(-). A XeF(2) molecule is placed in the center of each rhombus of the Ba(2+) array so that its symmetry axis is perpendicular to the plane of the Ba(SbF(6))(2).XeF(2) layer. This layer is linked to its neighbors by a layer of centrosymmetric XeF(2) molecules. Raman spectra are in accord with all XeF(2) molecules being symmetrical.  相似文献   

13.
Reger DL  Watson RP  Smith MD 《Inorganic chemistry》2006,45(25):10077-10087
Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene, (m-[CH(pz)2]2C6H4, Lm), p-bis[bis(1-pyrazolyl)methyl]benzene, (p-[CH(pz)2]2C6H4, Lp), and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with AgX salts (pz = 1-pyrazolyl; X = BF4- or PF6-) yield two types of molecular motifs depending on the arrangement of the ligating sites about the central arene ring. Reactions of the m-phenylene-linked Lm with AgBF4 and AgPF6 afford complexes consisting of discrete, metallacyclic dications: [Ag2(mu-Lm)2](BF4)2 (1) and [Ag2(mu-Lm)2](PF6)2 (2). When the p-phenylene-linked Lp is treated with AgBF4 and AgPF6, acyclic, cationic coordination polymers are obtained: {[Ag(mu-Lp)]BF4}infinity (3) and {[Ag(mu-Lp)]PF6}infinity (4). Reaction of the ligand L3, containing three bis(pyrazolyl)methane units in a meta arrangement, with an equimolar amount of AgBF4 again yields discrete metallacyclic dications in which one bis(pyrazolyl)methane unit on each ligand remains unbound: [Ag2(mu-L3)2](BF4)2 (5). Treatment of L3 with an excess of AgBF4 affords a polymer of metallacycles, {[Ag3(mu-L3)2](BF4)3}infinity (6), with one of the bis(pyrazolyl)methane units on each ligand bound to a silver cation bridging two metallacycles. The supramolecular structures of the silver(I) complexes 1-6 are organized by noncovalent interactions, including weak hydrogen bonding, pi-pi, and anion-pi interactions.  相似文献   

14.
Two new mononuclear FeII complexes, [(L52aH)FeII](PF6)2 (1-(PF6)2) and [(L52a)FeII]BPh4 (2-(BPh4)) have been synthesized with the new aminopyridyl ligand bearing a pivaloylamido arm L52aH (2,2-dimethyl-N-[6-({[2-(methyl-pyridin-2-ylmethyl-amino)-ethyl]-pyridin-2-ylmethyl-amino}-methyl)-pyridin-2-yl]-propionamide), or its deprotonated form L52a-. The structures of the ferrous complexes have been determined by X-ray analysis. The mononuclear FeII is in a pseudo-octahedral environment in both complexes, the six positions around the metal center being occupied by five nitrogen atoms and one oxygen atom from the ligand. Whatever the protonation state of the amide function, the structures are very similar, the FeII being 6-fold coordinated by the two amines, three pyridines, and the oxygen atom from the ligand. These two complexes exhibit an acid/base equilibrium in solution that has been studied by UV-vis spectroscopy and cyclic voltammetry in acetonitrile. The reactivity of 1-(PF6)2 with H2O2 in methanol affords the formation of a new low-spin FeIII(OOH) intermediate in which the oxygen atom is retained in the coordination sphere of the metal.  相似文献   

15.
Reaction of a tris-bidentate ligand L(1) (which can cap one triangular face of a metal polyhedron), a bis-bidentate ligand L(2) (which can span one edge of a metal polyhedron), and a range of M(2+) ions (M = Co, Cu, Cd), which all have a preference for six coordination geometry, results in assembly of the mixed-ligand polyhedral cages [M12(mu(3)-L(1))4(mu-L(2))12](24+). When the components are combined in the correct proportions [M(2+):L(1):L(2) = 3:1:3] in MeNO2, this is the sole product. The array of 12 M(2+) cations has a cuboctahedral geometry, containing six square and eight triangular faces around a substantial central cavity; four of the eight M3 triangular faces (every alternate one) are capped by a ligand L(1), with the remaining four M3 faces having a bridging ligand L(2) along each edge in a cyclic helical array. Thus, four homochiral triangular {M3(L(2))3}(6+) helical units are connected by four additional L(1) ligands to give the mixed-ligand cuboctahedral array, a topology which could not be formed in any homoleptic complex of this type but requires the cooperation of two different types of ligand. The complex [Cd3(L(2))3(ClO4)4(MeCN)2(H2O)2](ClO4)2, a trinuclear triple helicate in which two sites at each Cd(II) are occupied by monodentate ligands (solvent or counterions), was also characterized and constitutes an incomplete fragment of the dodecanuclear cage comprising one triangular {M3(L(2))3}(6+) face which has not yet reacted with the ligands L(1). (1)H NMR and electrospray mass spectrometric studies show that the dodecanuclear cages remain intact in solution; the NMR studies show that the Cd 12 cage has four-fold (D2) symmetry, such that there are three independent Cd(II) environments, as confirmed by a (113)Cd NMR spectrum. These mixed-ligand cuboctahedral complexes reveal the potential of using combinations of face-capping and edge-bridging ligands to extend the range of accessible topologies of polyhedral coordination cages.  相似文献   

16.
In the standard electrospray ionization mass spectra of many common, low molecular mass organic compounds dissolved in methanol, peaks corresponding to ions with formula [3M + Met](2+) (M = organic molecule, Met = bivalent metal cation) are observed, sometimes with significant abundances. The most common are ions containing Mg(2+), Ca(2+) and Fe(2+). Their presence can be easily rationalized on the basis of typical organic reaction work-up procedures. The formation of [3M + Met](2+) ions has been studied using N-FMOC-proline methyl ester as a model organic ligand and Mg(2+), Ca(2+), Sr(2+), Ba(2+), Fe(2+), Ni(2+), Mn(2+), Co(2+) and Zn(2+) chlorides or acetates as the sources of bivalent cation. It was found that all ions studied form [3M + Met](2+) complexes with N-FMOC-proline methyl ester, some of them at very low concentrations. Transition metal cations generally show higher complexation activity in comparison with alkaline earth metal cations. They are also more specific in the formation of [3M + Met](2+) complexes. In the case of alkaline earth metal cations [2M + Met](2+) and [4M + Met](2+) complex ions are also observed. It has been found that [3M + Met](2+) complex ions undergo specific fragmentation at relatively low energy, yielding fluorenylmethyl cation as a major product. [M + Na](+) ions are much more stable and their fragmentation is not as specific.  相似文献   

17.
The salt [F5SN(H)Xe][AsF6] has been synthesized by the reaction of [F5SNH3][AsF6] with XeF2 in anhydrous HF (aHF) and BrF5 solvents and by solvolysis of [F3S triple bond NXeF][AsF6] in aHF. Both F5SN(H)Xe(+) and F5SNH3(+) have been characterized by (129)Xe, (19)F, and (1)H NMR spectroscopy in aHF (-20 degrees C) and BrF5 (supercooled to -70 degrees C). The yellow [F5SN(H)Xe][AsF6] salt was crystallized from aHF at -20 degrees C and characterized by Raman spectroscopy at -45 degrees C and by single-crystal X-ray diffraction at -173 degrees C. The Xe-N bond length (2.069(4) A) of the F5SN(H)Xe(+) cation is among the shortest Xe-N bonds presently known. The cation interacts with the AsF6(-) anion by means of a Xe---F-As bridge in which the Xe---F distance (2.634(3) A) is significantly less than the sum of the Xe and F van der Waals radii (3.63 A) and the AsF6(-) anion is significantly distorted from Oh symmetry. The (19)F and (129)Xe NMR spectra established that the [F5SN(H)Xe][AsF6] ion pair is dissociated in aHF and BrF5 solvents. The F5SN(H)Xe(+) cation decomposes by HF solvolysis to F5SNH3(+) and XeF2, followed by solvolysis of F5SNH3(+) to SF6 and NH4(+). A minor decomposition channel leads to small quantities of F5SNF2. The colorless salt, [F5SNH3][AsF6], was synthesized by the HF solvolysis of F3S triple bond NAsF5 and was crystallized from aHF at -35 degrees C. The salt was characterized by Raman spectroscopy at -160 degrees C, and its unit cell parameters were determined by low-temperature X-ray diffraction. Electronic structure calculations using MP2 and DFT methods were used to calculate the gas-phase geometries, charges, bond orders, and valencies as well as the vibrational frequencies of F 5SNH3(+) and F5SN(H)Xe(+) and to aid in the assignment of their experimental vibrational frequencies. In addition to F5TeN(H)Xe(+), the F5SN(H)Xe(+) cation provides the only other example of xenon bonded to an sp (3)-hybridized nitrogen center that has been synthesized and structurally characterized. These cations represent the strongest Xe-N bonds that are presently known.  相似文献   

18.
The electronic properties of the high spin mononuclear MnII complexes [Mn(tpa)(NCS)2] (1) (tpa=tris-2-picolylamine), [Mn(tBu3-terpy)2](PF6)2 (2) (tBu3-terpy=4,4',4'-tri-tert-butyl-2,2':6',2'-terpyridine) and [Mn(terpy)2](I)2 (3) (terpy=2,2':6',2'-terpyridine) with an N6 coordination sphere have been determined by multifrequency EPR spectroscopy. The X-ray structures of 1.CH3CN and 2.C4H10 O.0.5 C2H5OH.0.5 CH3OH reveal that the MnII ion lies at the center of a distorted octahedron. The D-values of 1-3 all fall in the narrow range of 0.041 to 0.105 cm(-1). The comparison of the results reported here and those found in the literature is consistent with the following observation: the D value is sensitive to the coordination number (6 or 5) of the MnII ion as long as the coordination sphere involves only nitrogen and/or oxygen based ligands. This magneto-structural correlation has been analyzed in this work though DFT model calculations. The zero-field splitting (zfs) parameters of 1-3 have been calculated and are in reasonable agreement with the experimental values. Hypothetical simplified models [Mn(NH3)x(OH2)y]2+ (x+y=5 or 6 and [Mn(NH3)5X]+ (X=OH, Cl)) have been constructed to investigate the origin of the zfs. This investigation reveals i) that D is sensitive to the coordination number (5 or 6) of the MnII ion, ii) for the five coordinate systems the major contribution to D is the spin-orbit coupling part, iii) for the six coordinate systems the major contribution to D is the spin-spin interaction and iv) the deprotonation of a water ligand leads to an increase of D, consistent with the relative ligand fields of OH(-) versus H2O.  相似文献   

19.
Diphenylvinylarsine oxide reacts with 1,2-bis(phenylphosphino)ethane in the presence of potassium tert-butoxide to give the anti-Markovnikov product (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,10-diarsa-4,7-diphosphadecane dioxide-1AsO,10AsO, which, upon reduction with HSiCl(3)/NEt(3) in boiling acetonitrile, affords in 84% overall yield the di(tertiary arsine)-di(tertiary phosphine) (R,R)-(+/-)/(R,S)-diphars. After separation of the diastereomers by fractional crystallization, the (R,R)-(+/-) form of the ligand was resolved by metal complexation with (+)-di(mu-chloro)bis[(R)-1-[1-(dimethylamino)ethyl]-2-phenyl-C(2),N]dipalladium(II): (R,R)-diphars, mp 87-88 degrees C, has [alpha](D)(21) = -18.6 (c 1.0, CH(2)Cl(2)); (S,S)-diphars has [alpha](D)(21) = +18.4 (c 1.0, CH(2)Cl(2)). The crystal and molecular structures of the complexes (M)-[M(2)[(R,R)-diphars](2)](PF(6))(2) (M = Cu, Ag, Au) have been determined: [M-(S(Cu),S(Cu))]-(-)-[Cu(2)[(R,R)-diphars](2)](PF(6))(2), orthorhombic, P2(1)2(1)2(1) (No. 19), a = 16.084(3) A, b = 18.376(3) A, c = 29.149(6) A, Z = 4; [M-(S(Ag),S(Ag))]-(+)-[Ag(2)[(R,R)-diphars](2)](PF(6))(2), triclinic, P1, a = 12.487(2) A, b = 12.695(4) A, c = 27.243(4) A, alpha = 92.06 degrees, beta = 95.19 degrees, gamma = 98.23 degrees, Z = 2; [M-(S(Au),S(Au))]-(-)-[Au(2)[(R,R)-diphars](2)](PF(6))(2), orthorhombic, P2(1)2(1)2(1) (No. 19), a = 16.199(4) A, b = 18.373(4) A, c = 29.347(2) A, Z = 4. In the copper(I) and gold(I) helicates, each ligand strand completes 1.5 turns of an M helix in a parallel arrangement about the two chiral MAs(2)P(2) stereocenters of S configuration. The unit cell of the silver(I) complex contains one molecule each of the parallel helicate of M configuration and the conformationally related double alpha-helix of M configuration in which each ligand strand completes 0.5 turns of an M helix about two metal stereocenters of S configuration. Energy minimization calculations of the three structures with use of the program SPARTAN 5.0 gave results that were in close agreement with the core structures observed.  相似文献   

20.
S4(AsF6)2.AsF3 was prepared by the reaction of sulfur with arsenic pentafluroide in liquid AsF3 (quantitatively) and in anhydrous HF in the presence of trace amounts of bromine. A single-crystal X-ray structure of the compound has been determined: monoclinic, space group P2(1)/c, Z = 4, a = 7.886(1) A, b = 9.261(2) A, c = 19.191(3) A, beta = 92.82(1) degrees, V = 1399.9(4) A3, T = 293 K, R1 = 0.052 for 1563 reflections (I > 2 sigma (I) 1580 total and 235 parameters). We report a term-by-term calculation of the lattice potential energy of this salt and also use our generalized equation, which estimates lattice energies to assist in probing the homopolyatomic cation thermochemistry in the solid and the gaseous states. We find S4(AsF6)2.AsF3 to be more stable (delta fH degree [S4(AsF6)2.AsF3,c] approximately -4050 +/- 105 kJ/mol) than either the unsolvated S4(AsF6)2 (delta fH degree [S4(AsF6)2,c] approximately -3104 +/- 117 kJ/mol) by 144 kJ/mol or two moles of S2AsF6 (c) and AsF3 (1) by 362 kJ/mol. The greater stability of the S(4)2+ salt arises because of the greater lattice potential energy of the 1:2 solvated salt (1734 kJ/mol) relative to twice that of the 1:1 salt (2 x 541 = 1082 kJ/mol). The relative lattice stabilization enthalpies of M(4)2+ ions relative to two M2+ ions (i.e., in M4(AsF6)2 (c) with respect to two M2AsF6 (c) (M = S, Se, and Te)) are found to be 218, 289, and 365 kJ/mol, respectively. Evaluation of the thermodynamic data implies that appropriate presently available anions are unlikely to stabilize M2+ in the solid phase. A revised value for delta fH degree [Se4(AsF6)2,c] = -3182 +/- 106 kJ/mol is proposed based on estimates of the lattice energy of Se4(AsF6)2 (c) and a previously calculated gasphase dimerization energy of 2Se2+ to Se(4)2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号