首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonlinear vibrations of functionally graded doubly curved shallow shells   总被引:1,自引:0,他引:1  
Nonlinear forced vibrations of FGM doubly curved shallow shells with a rectangular base are investigated. Donnell’s nonlinear shallow-shell theory is used and the shell is assumed to be simply supported with movable edges. The equations of motion are reduced using the Galerkin method to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities. Using the multiple scales method, primary and subharmonic resonance responses of FGM shells are fully discussed and the effect of volume fraction exponent on the internal resonance conditions, softening/hardening behavior and bifurcations of the shallow shell when the excitation frequency is (i) near the fundamental frequency and (ii) near two times the fundamental frequency is shown. Moreover, using a code based on arclength continuation method, a bifurcation analysis is carried out for a special case with two-to-one internal resonance between the first and second doubly symmetric modes with respect to the panel’s center (ω13≈2ω11). Bifurcation diagrams and Poincaré maps are obtained through direct time integration of the equations of motion and chaotic regions are shown by calculating Lyapunov exponents and Lyapunov dimension.  相似文献   

2.
In formulating mathematical models for dynamical systems, obtaining a high degree of qualitative correctness (i.e. predictive capability) may not be the only objective. The model must be useful for its intended application, and models of reduced complexity are attractive in many cases where time-consuming numerical procedures are required. This paper discusses the derivation of discrete low-dimensional models for the nonlinear vibration analysis of thin cylindrical shells. In order to understand the peculiarities inherent to this class of structural problems, the nonlinear vibrations and dynamic stability of a circular cylindrical shell subjected to static and dynamic loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly nonlinear behavior under both static and dynamic loads. Geometric nonlinearities due to finite-amplitude shell motions are considered by using Donnell's nonlinear shallow-shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the nonlinear vibration modes and the discretized equations of motion are obtained by the Galerkin method using modal expansions for the displacements that satisfy all the relevant boundary and symmetry conditions. Next, the model is analyzed via the Karhunen-Loève expansion to investigate the relative importance of each mode obtained by the perturbation solution on the nonlinear response and total energy of the system. The responses of several low-dimensional models are compared. It is shown that rather low-dimensional but properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

3.
A theory is formulated for the small amplitude free vibration of thick, circular cylindrical shells laminated of bimodulus composite materials, which have different elastic properties depending upon whether the fiber-direction strain is tensile or compressive. The theory used is the dynamic, shear deformable (moderately thick shell) analog of the Sanders best first approximation thin shell theory. By means of tracers, the analysis can be reduced to that of various simpler shell theories, namely Love's first approximation, and Donnell's shallow shell theory. As an example of the application of the theory, a closed form solution is presented for a freely supported panel or complete shell. To validate the analysis, numerical results are compared with existing results for various special cases. Also, the effects of the various shell theories, thickness shear flexibility, and bimodulus action are investigated.  相似文献   

4.
Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur’e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.  相似文献   

5.
This is a study of nonlinear traveling wave response of a cantilever circular cylindrical shell subjected to a concentrated harmonic force moving in a concentric circular path at a constant velocity. Donnell's shallow-shell theory is used, so that moderately large vibrations are analyzed. The problem is reduced to a system of ordinary differential equations by means of the Galerkin method. Frequency-responses for six different mode expansions are studied and compared with that for single mode to find the more contracted and accurate mode expansion investigating traveling wave vibration. The method of harmonic balance is applied to study the nonlinear dynamic response in forced oscillations of this system. Results obtained with analytical method are compared with numerical simulation, and the agreement between them bespeaks the validity of the method developed in this paper. The stability of the period solutions is also examined in detail.  相似文献   

6.
In this paper, internal resonance and nonlinear dynamics of regenerative chatter in milling process is investigated. An extended dynamic model of the peripheral milling process including both structural and cutting force nonlinearities is presented. Closed form expressions for the nonlinear cutting forces are derived through their Fourier series components. In the presence of the large vibration amplitudes, the loss of contact effect is included in this model. Using the multiple-scales approach, analytical approximate response of the delayed nonlinear system is obtained. Considering the internal resonance dynamics (i.e. mode coupling), the energy transfer between the coupled xy modes is studied. The results show that during regenerative chatter under specific cutting conditions, one mode can decay. Furthermore, it is possible to adjust the rate at which the x-mode (or y-mode) decays by implementation of the internal resonance. Therefore, under both internal resonance and regenerative chatter conditions, it is possible to suppress the undesirable vibration of one mode (direction) in which accurate surface finish is required. Under the steady-state motion, jump phenomenon is investigated for the process with regenerative chatter under various cutting conditions. Moreover, the effects of structural and cutting force nonlinearities on the stability lobes diagram of the process are investigated.  相似文献   

7.
《中国物理 B》2021,30(9):90503-090503
High-voltage transmission line possesses a typical suspended cable structure that produces ice in harsh weather. Moreover, transversely galloping will be excited due to the irregular structure resulting from the alternation of lift force and drag force. In this paper, the nonlinear dynamics and internal resonance of an iced cable under wind excitation are investigated.Considering the excitation caused by pulsed wind and the movement of the support, the nonlinear governing equations of motion of the iced cable are established using a three-degree-of-freedom model based on Hamilton's principle. By the Galerkin method, the partial differential equations are then discretized into ordinary differential equations. The method of multiple scales is then used to obtain the averaged equations of the iced cable, and the principal parametric resonance-1/2 subharmonic resonance and the 2:1 internal resonance are considered. The numerical simulations are performed to investigate the dynamic response of the iced cable. It is found that there exist periodic, multi-periodic, and chaotic motions of the iced cable subjected to wind excitation.  相似文献   

8.
This study analyzed the nonlinear vibration of an axially moving beam subject to periodic lateral force excitations. Attention is paid to the fundamental and subharmonic resonances, since the excitation frequency is close to the first two natural frequencies of the system. The incremental harmonic balance (IHB) method was used to evaluate the nonlinear dynamic behaviour of the axially moving beam. The stability and bifurcations of the periodic solutions for given parameters were determined by the multivariable Floquet theory using Hsu’s method. The solutions obtained from the IHB method agreed very well with those obtained from numerical integration. Furthermore, numerical examples are given to illustrate the effects of the three-to-one internal resonance on the response of the system.  相似文献   

9.
The collective dynamic response of microbeam arrays is governed by nonlinear effects, which have not yet been fully investigated and understood. This work employs a nonlinear continuum-based model in order to investigate the nonlinear dynamic behavior of an array of N nonlinearly coupled micro-electromechanical beams that are parametrically actuated. Investigations focus on the behavior of small size arrays in the one-to-one internal resonance regime, which is generated for low or zero DC voltages. The dynamic equations of motion of a two-element system are solved analytically using the asymptotic multiple-scales method for the weakly nonlinear system. Analytically obtained results are verified numerically and complemented by a numerical analysis of a three-beam array. The dynamic responses of the two- and three-beam systems reveal coexisting periodic and aperiodic solutions. The stability analysis enables construction of a detailed bifurcation structure, which reveals coexisting stable periodic and aperiodic solutions. For zero DC voltage only quasi-periodic and no evidence for the existence of chaotic solutions are observed. This study of small size microbeam arrays yields design criteria, complements the understanding of nonlinear nearest-neighbor interactions, and sheds light on the fundamental understanding of the collective behavior of finite-size arrays.  相似文献   

10.
A reactor is modeled as a thin cylinder with one end capped by a solid circular plate and the dynamic behaviour of this structure is investigated when it is subjected to an impulsive load uniformly distributed over the circular plate. To simplify calculations, the load is assumed to be a step function with respect to time. As the fundamental equation of the cylinder under an axisymmetrical load, Donnell's equation is used and it is solved by the Laplace transformation method. From the results of the theoretical analysis, it becomes evident that large hoop stresses are induced in the neighbourhood of the junction of the plate and the cylinder.  相似文献   

11.
The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of some of the lowest natural frequencies is investigated. Donnell's non-linear shallow-shell theory is used and the solution is obtained by the Galerkin method. Several expansions involving 16 or more natural modes of the shell are used. The boundary conditions on the radial displacement and the continuity of circumferential displacement are exactly satisfied. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The non-linear equations of motion are studied by using a code based on the arclength continuation method. A series of accurate experiments on forced vibrations of an empty and water-filled stainless-steel shell have been performed. Several modes have been intensively investigated for different vibration amplitudes. A closed loop control of the force excitation has been used. The actual geometry of the test shell has been measured and the geometric imperfections have been introduced in the theoretical model. Several interesting non-linear phenomena have been experimentally observed and numerically reproduced, such as softening-type non-linearity, different types of travelling wave response in the proximity of resonances, interaction among modes with different numbers of circumferential waves and amplitude-modulated response. For all the modes investigated, the theoretical and experimental results are in strong agreement.  相似文献   

12.
The free vibration problem of thin elastic cross-ply laminated circular cylindrical panels is considered. For this problem, a theoretical unification as well as a numerical comparison of the thin shell theories most commonly used (in engineering applications) is presented. In more detail, the problem is formulated in such a way that by using some tracers, which have the form of Kronecker's deltas, the stress-strain relations, constitutive equations and equations of motion obtained produce, as special cases, the corresponding relations and equations of Donnell's, Love's, Sanders' and Flugge's theories. By using a closed form solution, obtained for simply supported panels, a comparison of corresponding numerical results obtained on the basis of all of the aforementioned shell theories is attempted.  相似文献   

13.
A numerical method is developed for the dynamic analysis of ring-stiffened circular cylindrical thin elastic shells. Only circular symmetric vibrations of the shell segments and radial and torsional vibrations of the rings are considered. The geometric and material properties of the shell segments and the rings may vary from segment to segment. Free vibrations or forced vibrations due to harmonic pressure loading are treated with the aid of dynamic stiffness influence coefficients for shell segments and rings. Forced vibrations due to transient pressure loading are treated with the aid of dynamic stiffness influence coefficients for shell segments and rings defined in the Laplace transform domain. The time domain response is then obtained by a numerical inversion of the transformed solution. The effect of external viscous or internal viscoelastic damping is also investigated by the proposed method. In all the cases, the dynamic problem is reduced to a static-like form and the “exact” solution of the problem is numerically obtained.  相似文献   

14.
Underwater noise radiated from offshore pile driving got much attention in recent years due to its threat to the marine environment. This study develops a three-dimensional semi-analytical method, in which the pile is modeled as an elastic thin cylindrical shell, to predict vibration and underwater acoustic radiation caused by hammer impact. The cylindrical shell, subject to the Reissner–Naghdi’s thin shell theory, is decomposed uniformly into shell segments whose motion is governed by a variational equation. The sound pressures in both exterior and interior fluid fields are expanded as analytical functions in frequency domain. The soil is modeled as uncoupled springs and dashpots distributed in three directions. The sound propagation characteristics are investigated based on the dispersion curves. The case study of a model subject to a non-axisymmetric force demonstrates that the radiated sound pressure has dependence on circumferential angle. The case study including an anvil shows that the presence of the anvil tends to lower the frequencies and the amplitudes of the peaks of sound pressure spectrum. A comparison to the measured data shows that the model is capable of predicting the pile driving noise quantitatively. This mechanical model can be used to predict underwater noise of piling and explore potential noise reduction measures to protect marine animals.  相似文献   

15.
Nonlinear vibration of micromachined asymmetric resonators   总被引:1,自引:0,他引:1  
In this paper, the nonlinear dynamics of a beam-type resonant structure due to stretching of the beam is addressed. The resonant beam is excited by attached electrostatic comb-drive actuators. This structure is modeled as a thin beam-lumped mass system, in which an initial axial force is exerted to the beam. This axial force may have different origins, e.g., residual stress due to micro-machining. The governing equations of motion are derived using the mode summation method, generalized orthogonality condition, and multiple scales method for both free and forced vibrations. The effects of the initial axial force, modal damping of the beam, the location, mass, and rotary inertia of the lumped mass on the free and forced vibration of the resonator are investigated. For the case of the forced vibration, the primary resonance of the first mode is investigated. It has been shown that there are certain combinations of the model parameters depicting a remarkable dynamic behavior, in which the second to first resonance frequencies ratio is close to three. These particular cases result in the internal resonance between the first and second modes. This phenomenon is investigated in detail.  相似文献   

16.
A finite-element model for three-dimensional acoustic cloaks in both cylindrical and spherical coordinates is presented. The model is developed through time-harmonic analysis to study pressure and velocity field distributions as well as the cloak’s performance. The model developed accounts for the fluid-structure interaction of thin fluid-loaded shells. A plane strain model is used for the thin shell. Mechanical harmonic excitation is applied to the fluid-loaded shell to investigate the effect of mechanical oscillation of the shell on the performance of the acoustic cloak. In developing this model, a deeper insight into the acoustic cloak phenomena presented by Cummer and Shurig in 2007 is presented. Different nonlinear coordinate transformations are presented to study their effect on the acoustic cloak performance.  相似文献   

17.
We study the size dependence of the nonlinear response of weakly confined excitons for the size region beyond the long wavelength approximation regime. The observed degenerate-four-wave mixing signal of GaAs thin layers exhibits an anomalous size dependence, where the signal is resonantly enhanced at a particular thickness region. The theoretical analysis elucidates that this enhancement is due to the size-resonant enhancement of the internal field with a spatial structure relevant to the nondipole-type excitonic state. These results establish the formerly proposed new type of size dependence of nonlinear response due to the nonlocality induced double resonance.  相似文献   

18.
Considering both an experimental and a numerical approach, the dynamic stability of a harmonically base-excited thin orthotropic cylindrical shell carrying a top mass is examined. To be able to compare the experimentally obtained results with numerical results, a semi-analytical coupled shaker-structure model is derived. Using the semi-analytical model, it is shown that the dynamic stability analysis of the base-excited cylindrical shell with top mass should be concentrated near a low frequency resonance, corresponding to a mode, in which axial vibrations of the (cylindrical shell with) top mass dominate. In this frequency region, the shell may exhibit an aperiodic beating type of response, if some critical value of the amplitude of the harmonic base-excitation is exceeded. This beating response is characterized by severe out-of-plane deformations. The experimental results qualitatively confirm the numerical observations.  相似文献   

19.
This paper, is concerned with the nonlinear dynamics and stability of thin circular cylindrical shells clamped at both ends and subjected to axial fluid flow. In particular, it describes the development of a nonlinear theoretical model and presents theoretical results displaying the nonlinear behaviour of the clamped shell subjected to flowing fluid. The theoretical model employs the Donnell nonlinear shallow shell equations to describe the geometrically nonlinear structure. The clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions and the circumferential continuity condition exactly. The fluid is assumed to be incompressible and inviscid, and the fluid–structure interaction is described by linear potential flow theory. The partial differential equation of motion is discretized using the Galerkin method and the final set of ordinary differential equations are integrated numerically using a pseudo-arclength continuation and collocation techniques and the Gear backward differentiation formula. A theoretical model for shells with simply supported ends is presented as well. Experiments are also described for (i) elastomer shells subjected to annular (external) air-flow and (ii) aluminium and plastic shells with internal water flow. The experimental results along with the theoretical ones indicate loss of stability by divergence with a subcritical nonlinear behaviour. Finally, theory and experiments are compared, showing good qualitative and reasonable quantitative agreement.  相似文献   

20.
明付仁  张阿漫  姚熊亮 《物理学报》2013,62(11):110203-110203
本文通过采用移动最小二乘函数作为近似函数 和完全拉格朗日方程作为近似方程来改善光滑粒子法的稳定性和数值精度; 在此基础上, 提出了壳结构静力分析的光滑粒子法, 并完善了壳结构动力分析方法; 最后, 采用国际公认的壳结构的标准测试模型对静力和动力问题分别进行了验证, 所得结果与已有数据吻合良好, 证明了本文数值模型的有效性和可靠性, 为光滑粒子法进一步在裂纹、破碎等非线性壳结构中的应用提供参考. 关键词: 弹性壳 静力与动力分析 光滑粒子法 完备性和稳定性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号