首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear models and synchronous response are generally adequate to describe and analyze rotors supported by hydrodynamic bearings. Hence, stiffness and damping coefficients can provide a good model for a wide range of situations. However, in some cases, this approach does not suffice to describe the dynamic behavior of the rotor-bearing system. Moreover, unstable motion occurs due to precessional orbits in the rotor-bearing system. This instability is called “oil whirl” or “oil whip”. The oil whirl phenomenon occurs when the journal bearings are lightly loaded and the shaft is whirling at a frequency close to one-half of rotor angular speed. When the angular speed of the rotor reaches approximately twice the natural frequency (first critical speed), the oil whip phenomenon occurs and remains even if the rotor angular speed increases. Its frequency and vibration mode correspond to the first critical speed. The main purpose of this paper is to validate a complete nonlinear solution to simulate the fluid-induced instability during run-up and run-down. A flexible rotor with a central disk under unbalanced excitation is modeled. A nonlinear hydrodynamic model is considered for short bearing and laminar flow. The effects of unbalance, journal-bearing parameters and rotor arrangement (vertical or horizontal) on the instability threshold are verified. The model simulations are compared with measurements at a real vertical power plant and a horizontal test rig.  相似文献   

2.
Catcher bearings (CBs) provide backup protection for rotating machines with active magnetic bearings (AMBs). The CBs are required in the event of an AMB failure or high transient loads. Numerical simulations of a rotor drop on CBs in flywheel energy storage system are conducted with a detailed CB model which includes a Hertzian load–deflection relationship between mechanical contacts, speed-and-preload-dependent bearing stiffness due to centrifugal force, and a Palmgren's drag friction torque. The transient simulation results show the rotor shaft response variations with the design parameters: shaft/bearing friction coefficients, axial preload, support damping of damper liner, and side loads from magnetic bearings. The results reveal that friction coefficients, support damping, and side loads are critical parameters to satisfy CB design objectives and prevent backward (super) whirl.  相似文献   

3.
The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.  相似文献   

4.
This paper describes research carried out to establish instability criteria for flexible rotors and shafts supported on oil-film bearings. In particular, the effect of external point damping in delaying the onset of instability is investigated, both theoretically and experimentally.  相似文献   

5.
This research presents an analytical model to investigate vibration due to ball bearing waviness in a rotating system supported by two or more ball bearings, taking account of the centrifugal force and gyroscopic moment of the ball. The waviness of rolling elements is modelled by the sinusoidal function, and it is incorporated into the position vectors of the race curvature center. The Hertzian contact theory is applied to calculate the elastic deflection and non-linear contact force, while the rotor has translational and angular motions. Both the centrifugal force and gyroscopic moment of the ball and the waviness of the rolling elements are included in the kinematic constraints and force equilibrium equations of a ball to derive the non-linear governing equations of the rotor, which are solved by using the Runge–Kutta–Fehlberg algorithm to determine the new position of the rotor. The proposed model is validated by the comparison of the results of the prior researchers. This research shows that the centrifugal force and gyroscopic moment of the ball plays the important role in determining the bearing frequencies, i.e., the principal frequencies, their harmonics and the sideband frequencies resulting from the waviness of the rolling elements of ball bearing. It also shows that the bearing vibration frequencies are generated by the waviness interaction not only between the rolling elements of one ball bearing, but also between those of two or more ball bearings constrained by the rotor.  相似文献   

6.
In this paper, a hybrid transducer ultrasonic motor is numerically analyzed by using two equivalent electrical circuit models. A transmission-line model for the torsional vibration in the stator, which can model any torsional vibration mode and their combinations, was introduced and compared with a lumped-element model, which modeled the fundamental torsional resonance mode in the stator. The calculation result by using the transmission-line model demonstrated that the second harmonic torsional vibration increased either with the static spring force by which the rotor was pressed to the stator or with the load torque placed on the rotor. The difference in the calculated motor performance between the two models appeared when the second harmonic torsional vibration became large at a sufficient static spring force.  相似文献   

7.
Preloading of rolling element bearings is often used to avoid clearance in the bearings and achieve precise dynamic requirement. Preloading gives rise to an expression of the restoring force, which is a non-linear function of the deformation of the rolling elements. In this paper, frequency-dependent optimum support characteristics have been found out by simultaneously minimizing the unbalance response (UBR) of the rotor and maximizing the stability limit speed (SLS) of a flexible horizontal rotor-shaft system comprising an unsymmetrically placed rotor disc placed on an elastic shaft mounted on preloaded rolling element bearings at the ends supported on viscoelastic polymeric supports. A sensitivity study of the UBR and SLS with respect to the support characteristics has been presented to have an idea about the permissible deviation of the support characteristics from the respective optimum, at any frequency. Thus, the sensitivity study helps the quality control man as well as the manufacturer of such supports to estimate the permissible deviation in the most sensitive frequency zones. The results presented in this work are in terms of non-dimensional parameters of the system and are, therefore, valid for any system under consideration.  相似文献   

8.
Catcher bearings (CBs) or auxiliary bearings provide mechanical backup protection in the events of magnetic bearing failure. This paper presents numerical analysis for a rotor drop on CBs and following thermal growths due to their mechanical rub using detailed CB and damper models. The detailed CB model is determined based on its material, geometry, speed and preload using the nonlinear Hertzian load–deflection formula, and the thermal growths of bearing components during the rotor drop are estimated using a 1D thermal model. A finite-element squeeze film damper provides the pressure profile of an annular oil film and the resulting viscous damping force. Numerical simulations of an energy storage flywheel with magnetic suspensions failed reveal that an optimal CB design using the detailed simulation models stabilizes the rotor drop dynamics and lowers the thermal growths while preventing the high-speed backward whirl. Furthermore, CB design guides based on the simulation results are presented.  相似文献   

9.
The Bently/Muszynska (B/M) model shows that oil whirl and oil whip are both self-sustained vibrations associated with two unstable modes of a rotor–fluid system. The model includes a rotating fluid damping and inertia force. In certain configurations, the rotating damping force overcomes the frictional internal damping of the rotor and pushes the rotor into a stable limit cycle of circular orbiting. Such a notion of a rotating fluid force is based on bulk-flow models of fluid-filled clearances that could be approximated as narrow since the tangential velocity of the fluid then translates to one angular velocity at a certain radial distance defined by an average radius. This paper scrutinizes the assumption of a rotating fluid inertia force and pinpoints the additional inertial effects of the swirling flow as the gap width increases. These effects are clarified by deriving the equation of motion of a body with a mass subjected to motion-induced fluid forces of a confined swirling flow. We show that the inertial effects of the swirling flow counteract the destabilizing effect of the rotating damping force. However, if the body mass is larger than the displaced fluid mass, instability follows. The frequency of the unstable mode is unchanged by the additional inertial effects and is always equal to the frequency of the damping that induces the instability.  相似文献   

10.
We investigate the temporal instabilities of mode intensities in two coupled unidirectional photorefractive ring resonators. The first resonator is driven by an external laser beam via photorefractive two-wave mixing. The internal oscillating beam is then employed to drive the second ring resonator. The second ring resonator provides a nonlinear loss mechanism for the coupled system. Complete spatial-temporal equations for describing the coupled system are derived and mean-field approximation is employed to simplify the transient analysis. The results of linear stability analysis indicate that the coupled system exhibits instability in the off-state and steady-state operation. The instability is explained in terms of competition between nonlinear gain and loss. The results are presented and discussed.Part II on Numerical Results will be published in a forthcoming issue of Applied Physics B  相似文献   

11.
A comparison of theoretical and experimental synchronous unbalance responses of a bowed Jeffcott rotor in fluid film bearings has been completed. A transfer matrix method was used to predict theoretically the response of a 25·4 mm shaft in fluid film bearings and results were compared to data from a previous experimental study. Four bearing types were used: two axial groove, pressure dam, tilting pad and four-lobe. Very good agreement was found for all bearing types at the rotor critical speed (3000 rpm). Differences less than 15% in peak response were found and the theoretical and experimental peaks were found to occur within 200 rpm. Worst agreement was found for the preloaded four-lobe bearings and this disagreement was found for speeds other than the critical speed. Also, for equal bow and unbalance the tilting pad and four-lobe bearings were found to produce the least and most damping at the critical speed, respectively. Previous to this time a comparison of theoretical and experimental synchronous responses of a rotor system representing industrial turbomachines has not been published, nor has a comparative study of the different bearing types.  相似文献   

12.
In the first sections of this paper the flexible rotating shaft of a turbo-rotor is treated by finite element analysis. Internal and external damping, gyroscopic forces, fluid-film forces, aerodynamic cross-coupling from steam flow and magnetic pull are taken into account. Although some hundred degrees of freedom have to be introduced to describe a realistic turbo-rotor, computational effort can be enormously reduced by making use of the banded structure of the system matrices.In the second part foundation dynamics are introduced into the rotor equations via a receptance formulation. The receptance matrices of the foundation or supporting systems can be obtained either from shaker tests or from the mode analysis of the foundation without shaft. Numerical examples are given.  相似文献   

13.
Iula A  Pappalardo M 《Ultrasonics》2004,42(1-9):291-296
In the present work a general model of the vibrational behavior of the axle of a piezoelectric motor is proposed. In this motor, a cylinder-shaped permanent magnet, which act as a rotor, is pressed in contact with an end of a steel axle by means of the magnetic forces. The other end of the axle is fitted at the center of a rotating traveling wave generator. A piezoelectric membrane, vibrating in a flexural anti-symmetrical mode, or a thick disk, vibrating in a radial anti-symmetrical mode, can be exploited as traveling wave generators. In the first case a bending moment, in the second case a transverse force is applied to the axle. In both cases, if the driving frequency coincides with a resonance frequency of the axle, the axle acts as a resonant displacement amplifier; a continuous slipping takes place between the axle and the rotor, and a torque is transmitted to the rotor. The proposed model is able to describe the axle vibrational behavior when it is excited by a bending moment, by a transverse force, and also when these two excitations are simultaneously applied. The axle is modeled as a four-port system and all its transfer functions, as well as the transversal displacement along the axle at each frequency can be easily computed. Computed results have been compared with experimental measurements carried out on two motor prototypes that exploit as traveling wave generators a membrane and a disk, respectively. A good agreement was obtained by properly taking into account the loading effect of the generator on the axle.  相似文献   

14.
A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical–magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters.  相似文献   

15.
The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.  相似文献   

16.
This paper investigates the friction-induced instability and the resulting self-excited vibration of a propeller–shaft system supported by water-lubricated rubber bearing. The system under consideration is modeled with an analytical approach by involving the nonlinear interaction among torsional vibrations of the continuous shaft, tangential vibrations of the rubber bearing and the nonlinear friction acting on the bearing–shaft contact interface. A degenerative two-degree-of-freedom analytical model is also reasonably developed to characterize system dynamics. The stability and vibrational characteristics are then determined by the complex eigenvalues analysis together with the quantitative analysis based on the method of multiple scales. A parametric study is conducted to clarify the roles of friction parameters and different vibration modes on instabilities; both the graphic and analytical expressions of instability boundaries are obtained. To capture the nature of self-excited vibrations and validate the stability analysis, the nonlinear formulations are numerically solved to calculate the transient dynamics in time and frequency domains. Analytical and numerical results reveal that the nonlinear coupling significantly affects the system responses and the bearing vibration plays a dominant role in the dynamic behavior of the present system.  相似文献   

17.
L.D. Hall 《Ultrasonics》2004,41(9):765-773
Continuous rubbing between the shaft and surrounding seals or end-glands of electricity generating turbine units can escalate into very severe vibration and costly rotor damage. Therefore such rotor-stator contacts require early diagnosis so as to minimize the financial consequences of any unplanned shutdowns. Acoustic emissions (AEs) or stress wave monitoring at the bearings has been identified as a sensitive non-destructive monitoring technique for such rub conditions [Electr. Eng. Jpn. 110(2) (1990); IEEE Proc. 6 (2000) 79; Hall and Mba, 14th International Congress on Condition Monitoring and Diagnostic Engineering Management (COMADEM’2001), Manchester, UK, 2001, p. 21]. However, experimental results from real turbines have been scarce. This paper presents a diagnosis of continuous rotor-stator rubbing in an operational 500 MW turbine unit via high frequency AE measurement within a 100 KHz-1 MHz ultrasonic band. As detailed by Sato [Electr. Eng. Jpn. 110(2) (1990)] and reported in this paper the onset of a continuous rub contact at a seal/gland was revealed by a sinusoidal modulation within the raw ‘rf’ AE response. By synchronous measurement at adjacent bearings, an estimation of the location of the rub was calculated using the phase delay between the adjacent AE modulations. Importantly, the AE diagnosis was closely corroborated by post-inspection of the turbine rotor.  相似文献   

18.
This second part of the study presents some experimental applications to mechanical systems in which the results of excitation estimation, obtained using traditional least squares and M-estimate, are compared.The first case presented is a single input–multiple outputs system: a simple test-rig for the study of the vibrations of a two-degrees of freedom system is employed to identify the constraint displacement that causes the measured mass vibrations in presence of heavy noise.The second case is a multiple inputs–multiple outputs system: a rotor test-rig is used to identify the positions, the amplitudes and the phases of two unbalances using the vibrations measured in the bearings. In this case, also an additional theoretical part is introduced about the basics of model-based identification in the frequency domain applied to rotor dynamics.The last case is again a single input–multiple outputs system, but in an industrial application: experimental vibrations of a 320 MW steam turbo-generator are used to identify position and amount of a known balancing mass in an on-field real case.Moreover, whilst in the numerical examples presented in the first part the knowledge of the system was perfect, in these cases some uncertainties are present also in the system model.Finally, the paper introduces the use of the M-estimate technique to evaluate the adequacy the model of the system, by means of the analysis of the weights attributed to the measures as a function of the frequency of the excitation.  相似文献   

19.
A weakly nonlinear model is proposed for multimode Kelvin-Helmholtz instability. The second-order mode coupling formula for Kelvin-Helmholtz instability in two-dimensional incompressible fluid is presented by expanding the perturbation velocity potential to second order. It is found that there is an important resonance in the course of the sum frequency mode coupling but the difference frequency mode coupling does not have. This resonance makes the sum frequency mode coupling process relatively complex. The sum frequency mode coupling is strongly dependent on time especially when the density of the two fluids is adjacent and the difference frequency mode coupling is not.  相似文献   

20.
This paper examines the non-linear dynamic behaviour of a flexible shaft. The shaft is mounted on two journal bearings and the axial load is supported by a defective hydrodynamic thrust bearing at one end. The defect is a levelness defect of the rotor. The thrust bearing behaviour must be considered to be non-linear because of the effects of the defect. The shaft is modelled with typical beam finite elements including effects such as the gyroscopic effects. A modal technique is used to reduce the number of degrees of freedom. Results show that the thrust bearing defects introduce supplementary critical speeds. The linear approach is unable to show the supplementary critical speeds which are obtained only by using non-linear analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号