首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Tensile tests were conducted on dual-phase high-strength steel in a Split-Hopkinson Tension Bar at a strain-rate in the range of 150–600/s and in a servo-hydraulic testing machine at a strain-rate between 10?3 and 100/s. A novel specimen design was utilized for the Hopkinson bar tests of this sheet material. Digital image correlation was used together with high-speed photography to study strain localisation in the tensile specimens at high rates of strain. By using digital image correlation, it is possible to obtain in-plane displacement and strain fields during non-uniform deformation of the gauge section, and accordingly the strains associated with diffuse and localised necking may be determined. The full-field measurements in high strain-rate tests reveal that strain localisation started even before the maximum load was attained in the specimen. An elasto-viscoplastic constitutive model is used to predict the observed stress–strain behaviour and strain localisation for the dual-phase steel. Numerical simulations of dynamic tensile tests were performed using the non-linear explicit FE code LS-DYNA. Simulations were done with shell (plane stress) and brick elements. Good correlation between experiments and numerical predictions was achieved, in terms of engineering stress–strain behaviour, deformed geometry and strain fields. However, mesh density plays a role in the localisation of deformation in numerical simulations, particularly for the shell element analysis.  相似文献   

2.
利用带有波形整形器的Split Hopkinson Pressure Bar(SHPB)技术测试了碳布叠层/碳复合材料在应变率为500、1 500 s-1时的动态压缩性能。研究结果表明:利用轧制紫铜作为整形器材料不仅可以有效地实现对碳布叠层/碳复合材料的常应变率压缩加载,而且有助于改善试样两端的应力平衡,从而保证测试数据的可靠性;此外,与准静态压缩相比较,在动态压缩载荷下,碳布叠层/碳复合材料的压缩强度有较强的应变率效应,且复合材料压缩强度的动态增加函数可以用Cowper-Symonds幂函数的形式来表示。  相似文献   

3.
Experimental data from uniaxial tensile tests on smooth and notched specimens of aluminium alloy 5083-H116 show that the material exhibits negative strain-rate sensitivity for strain rates within a certain range. The negative strain-rate dependence, which is attributed to dynamic strain aging, leads to serrated stress–strain curves, discontinuous plastic flow and propagating deformation bands during plastic straining (also denoted as the Portevin–Le Chatelier effect). Band analysis and linear perturbation analysis are performed using simple elastic-viscoplastic constitutive equations that include negative strain-rate sensitivity in a simplified manner. The negative strain-rate sensitivity allows for jumps in the plastic strain rate, which in turn permits the existence of localisation bands for the elastic-viscoplastic model. The simple elastic-viscoplastic constitutive model has been implemented in LS-DYNA, and non-linear finite element simulations of smooth and notched tensile test specimens are performed, allowing more detailed investigations into the effects of the negative strain-rate sensitivity on the material's behaviour.  相似文献   

4.
聚碳酸酯的高应变率拉伸实验   总被引:1,自引:0,他引:1  
付顺强  汪洋  王宇 《实验力学》2009,24(3):202-206
为了解应变率对聚碳酸酯拉伸力学行为的影响,在旋转盘式间接杆杆型冲击拉伸试验机和MTS809材料试验机上,对聚碳酸酯棒材进行了高应变率和准静态加载下的单向拉伸试验,应变率分别为380 s-1、800 s-1、1750 s-1和0.001 s-1、0.05 s-1,得到了聚碳酸酯的拉伸应力应变曲线.试验结果表明:聚碳酸酯的拉伸力学性能具有明显的应变率相关性,其屈服应力和失稳应变随应变率的增加而增大.依据试验结果,采用朱王唐粘弹性本构模型来描述聚碳酸酯的非线性粘弹性拉伸力学行为.模型结果显示,在本文实施的应变率范围内,朱王唐模型可以较好地表征聚碳酸酯的拉伸应力应变响应.  相似文献   

5.
Evagelia Kontou 《Meccanica》2018,53(9):2353-2362
An experimental study of a tensile loading–unloading procedure, as well as multi-cyclic response in a strain-controlled program of a Styrene-Butadiene (SBR) elastomer reinforced with four different weight fractions of carbon nanotubes (CNTs) has been performed. The Mullins effect features, namely hysteresis, damage and residual strain, exhibited by the SBR/nanocomposites were analyzed by a modified Gent–Zener rheological model, and a damage function. Especially for the multi-cyclic stress–strain curves, phenomenological equation of the model parameters evolution with strain were also introduced. The same loading procedure was applied in pre-stressed materials, revealing a different stress–strain response due to strain prehistory. The model has been proven to accurately capture the loading–unloading behavior, the residual strain, hysteresis loops as well as the multi-cyclic behavior of the SBR/CNT nanocomposites.  相似文献   

6.
Observations are reported on the mechanical response of a ternary composite (blend of polypropylene and a thermoplastic elastomer reinforced with montmorilonite nanoclay) at cyclic tensile deformations with relatively large amplitudes (up to the necking point). Constitutive equations for the viscoplastic behavior of hybrid nanocomposites are derived by using the laws of thermodynamics. Adjustable parameters in the stress–strain relations are found by fitting the experimental data. It is demonstrated that the model adequately predicts stress–strain diagrams of the nanocomposite under cyclic loading.  相似文献   

7.
Previous investigations on the effects of strain-rate and temperature histories on the mechanical behavior of steel are briefly reviewed. A study is presented on the influence of strain rate and strain-rate history on the shear behavior of a mild steel, over a wide range of temperature Experiments were performed on thin-walled tubular specimens of short gage length, using a torsional split-Hopkinson-bar apparatus adapted to permit quasi-static as well as dynamic straining at different temperatures. The constant-rate behavior was first measured at nominal strain rates of 10?3 and 103 s?1 for ?150, ?100, ?50, 20, 200 and 400°C. Tests were then carried out, at the same temperatures, in which the strain rate was suddenly increased during deformation from the lower to the higher rate at various large values of plastic strain. The increase in rate occurred in a time of the order of 20 μs so that relatively little change of strain took place during the jump. The low strain-rate results show a well-defined elastic limit but no yield drop, a small yield plateau is found at room temperature. The subsequent strain hardening shows a maximum at 200°C, when serrated flow occurs and the ductility is reduced. The high strain-rate results show a considerable drop of stress at yield. The post-yield flow stress decreases steadily with increasing temperature, throughout the temperature range investigated. At room temperature and below, the strain-hardening rate becomes negative at large strains. The adiabatic temperature rise in the dynamic tests was computed on the assumption that the plastic work is entirely converted to heat. This enabled the isothermal dynamic stress-strain curves to be calculated, and showed that considerable thermal softening took place. The initial response to a strain-rate jump is approximately elastic, and has a magnitude which increases with decrease of testing temperature; it is little affected by the amount of prestrain. At 200 and 400° C, a yield drop occurs after the initial stress increment. The post-jump flow stress is always greater than that for the same strain in a constant-rate dynamic test, the strain-hardening rate becoming negative at large strains or low testing temperature. This observed effect of strain-rate history cannot be explained by the thermal softening accompanying dynamic deformation. These and other results concerning total ductility under various strain-rate and temperature conditions show that strain-rate history strongly affects the mechanical behavior of the mild steel tested and, hence, should be taken into account in the formulation of constitutive equations for that material.  相似文献   

8.
A physically based modelling and experimental investigation of the work hardening behaviour of IF steel covering a wide range of strain rates including complex strain path and/or strain rate changes are presented. In order to obtain isothermal stress–strain curves at high strain rates, a procedure has been proposed with the aid of finite element analysis. The result reveals that the apparent excess of the flow stress after a jump in strain rate, which is frequently observed in bcc metals, is in fact due to the thermal softening at large strains, and that the flow stress after a jump in strain rate tends asymptotically to the values corresponding to the curve at the new strain rate. The strain rate affects not only the short-range stress but also the long-range stress via the strain-rate dependant evolution of dislocation structures. The proposed model is based on the dislocation model of intragranular hardening proposed by Teodosiu and Hu [Teodosiu, C., Hu, Z., 1995. Evolution of the intragranular microstructure at moderate and large strains: modelling and computational significance. In: Shen, S., Dawson, P. R., (Eds.), Proceedings of Numiform'95 on Simulation of Materials Processing: Theory, Methods and Applications. Balkema, Rotterdam, pp. 173–182] and extended to strain rate sensitive one with applying the results of the thermal activation analysis. A satisfactory agreement has been achieved between model predictions and experimental results.  相似文献   

9.
研究冻土的动态力学性能对于地下工程人工冻结法施工等具有重要意义。本文应用分离式霍普金森压杆(SHPB),研究了冻土单轴动态加载下的力学性能,涉及-3、-8、-13、-17、-23和-28℃共6个负温的冻土,应变率范围350~1200s-1。获得了相应条件下的冻土应力应变关系。冻土的单轴动态应力应变曲线具有脆性特征。发现冻土具有温度和应变率效应,其强度随温度降低和应变率增大而增大,最终应变随应变率增大而增大。冻土温度越低,应变率敏感性越强;加载应变率越高,冻土的温度效应越显著。文中提出的粘弹性损伤型本构模型能够较好的描述6个温度冻土的应力应变关系。  相似文献   

10.
The stress–strain behaviour of extruded AA6xxx and AA7xxx aluminium alloys in T6 temper was studied at a wide range of strain rates. Tensile tests at low to medium strain rates were performed in a standard tensile test machine, while a split-Hopkinson tension bar was used to carry out tests at high rates of strain. Extruded aluminium alloys have anisotropic mechanical properties, and tests were therefore done in three directions with respect to the extrusion direction. It is found that the AA6xxx alloys exhibit no significant rate sensitivity in the stress–strain behaviour, while moderate rate sensitivity was found for the AA7xxx alloys. There seems to be no significant difference between the rate sensitivity in the three tensile directions. The experimental data were used to identify the parameters of a thermo-viscoplastic constitutive relation for the extruded alloys, which includes the effects of strain hardening, strain-rate hardening, thermal softening and plastic anisotropy.  相似文献   

11.
Non-proportional torsion–tension and biaxial-compressive experimental results are presented on tantalum, tantalum alloy with 2.5% tungsten, and AerMet 100 steel. These test results form a comprehensive set of data to show the material behaviors at finite strain and wide strain-rate range. Using the parameter set determined from uniaxial constant strain-rate compressive and tensile tests, the capability of a new constitutive model (Khan, A.S., Liang, R., 1999. Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling. International Journal of Plasticity 15, 1089–1109) is shown to accurately predict complex loading paths of current experimental results. Using von Mises equivalent strain, stress, and strain rate, the constitutive model gives excellent predictions of these non-proportional experimental results.  相似文献   

12.
In this study, we developed a long split Hopkinson pressure bar (LSHPB) for mechanically characterizing soft materials at intermediate strain rates. Using a proper pulse shaper, a loading pulse over 3 ms was produced for compression experiments on a PMDI foam material at the strain rates in the order of 10/s. The pulse shaping technique minimized the dispersion effects of stress wave when propagating through such a long bar system. Consistency of stress–strain curves obtained from the LSHPB and an MTS in the same strain rate range shows that a gap currently existing in intermediate strain-rate range is closed by the introduction of the LSHPB.  相似文献   

13.
双基推进剂的高应变率力学特性及其含损伤ZWT本构   总被引:1,自引:0,他引:1  
为了解双基推进剂在冲击载荷下的力学特性及本构行为,利用材料试验机和分离式霍普金森压杆(SHPB)对双基推进剂进行了单轴压缩实验,并对实验数据的有效性进行了检验。用二波法对实验数据进行处理,得到了双基推进剂的应力应变曲线。实验结果表明:双基推进剂具有明显的应变率相关性,动态下屈服应力与静态下相比明显提高,且屈服应力表现为应变率对数的双线性关系;双基推进剂屈服应变表现为延脆转换特性,在低应变率下表现为延展性,高应变率下表现为冲击脆化特性。利用含损伤朱王唐(ZWT)本构模型对实验结果进行了拟合,得到了模型中的本构参数,并对损伤因子项进行了分析。通过模型预测曲线与实验曲线的对比,发现含损伤ZWT本构能较好地描述双基推进剂在0~0.14应变范围内的力学特性。  相似文献   

14.
在交通事故中,腹部器官常因冲击载荷作用而受到伤害,严重时甚至危及生命.肝损伤是腹部损伤中最为常见的一种,致死率很高,了解肝脏的动态力学性能对于事故中肝脏的损伤评估及防护设计有着重要的意义.从新鲜的猪肝组织中取肝实质部分制作试样,利用英斯特朗材料试验机对其进行两种加载率(0.004 s-1,0.04 s-1)和两种加载方向(垂直肝脏表面和平行于肝脏表面)的准静态压缩试验,并压缩至破坏.利用改进的分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)实验装置沿平行于肝脏表面方向进行三种高应变率(1 300 s-1,2 400 s-1,4 500 s-1)的动态压缩试验.结果表明:所有应变率下的猪肝压缩应力应变曲线都呈非线性凹向上特征,初始阶段应力值很低,应变约30%后应力幅值显著增大;准静态压缩时,两种应变率(0.004 s-1,0.04 s-1)和两种加载方向下肝脏组织破坏应力和破坏应变等力学性能无显著不同,平均破坏应变为48%,平均破坏应力为0.45 MPa.高应变率下肝脏组织的流动应力明显高于准静态下的流动应力,表现出一定的率敏感性.采用Yeoh型超弹性本构模型描述猪肝组织准静态力学性能,基于黏超弹性模型理论,提出了一个能描述肝脏组织从低应变率到高应变率范围力学性能的率相关本构模型,该模型与实验结果有很好的一致性.  相似文献   

15.
Transient elongational rheology of two commercial-grade polypropylene (PP) and the organoclay thermoplastic nanocomposites is investigated. A specifically designed fixture consisting of two drums (SER Universal Testing Platform) mounted on a TA Instruments ARES rotational rheometer was used to measure the transient uniaxial extensional viscosity of both polypropylene and nanoclay/PP melts. The Hencky strain rate was varied from 0.001 to 2 s − 1, and the temperature was fixed at 180°C. The measurements show that the steady-state elongational viscosity was reached at the measured Hencky strains for the polymer and for the nanocomposites. The addition of nanoclay particles to the polymer melt was found to increase the elongation viscosity principally at low strain rates. For example, at a deformation rate of 0.3 s − 1, the steady-state elongation viscosity for polypropylene was 1.4 × 104 Pa s which was raised to 2.8 × 104 and 4.5 × 104 Pa s after addition of 0.5 and 1.5 vol.% nanoclay, respectively. A mesoscopic rheological model originally developed to predict the motion of ellipsoid particles in viscoelastic media was modified based on the recent developments by Eslami and Grmela (Rheol Acta 47:399–415, 2008) to take into account the polymer chain reptation. We show that the orientation states of the particles and the rheological behavior of the layered particles/thermoplastic hybrids can be quantitatively explained by the proposed model.  相似文献   

16.
The qualitative dependence of the mechanical behavior of some materials on strain rate is now well known. But the quantitative relation between stress, strain and strain rate has been established for only a few materials and for only a limited range. This relation, the so-called constitutive equation, must be known before plasticity or plastic-wave-propagation theory can be used to predict the stress or strain distribution in parts subjected to impact stresses above the yield strength. In this paper, a brief review of some of the experimental techniques for measuring the stress, strain, strain-rate relationship is given, and some of the difficulties and shortcomings pointed out. Ordinary creep or tensile tests can be used at plastic-strain rates from 10?8 to about 10?1/sec. Special quasi-static tests, in which the stress- and strain-measuring devices as well as the specimen geometry and support have been optimized, are capable of giving accurate results to strain rates of about 102/sec. At higher strain rates, it is shown that wave-propagation effects must be included in the design and analysis of the experiments. Special testing machines for measuring stress, strain and strain-rate relationships in compression, tension and shear at strain rates up to 105/sec are described, and some of the results presented. With this type of testing machine, the analysis of the data requires certain assumptions whose validity depends upon proper design of the equipment. A critical evaluation of the accuracy of these types of tests is presented.  相似文献   

17.
HTPB复合底排药压缩屈服应力模型研究   总被引:2,自引:0,他引:2  
目前广泛应用于底排增程技术的 HTPB 复合底排药 (composite base bleed grain,CBBG) 是一种颗粒填充含能材料,战场环境中将承受冲击、温度等载荷作用. 为研究 HTPB CBBG 冲击压缩力学性能,进行了不同温度 (233$\sim$323 K) 和应变率 (1100$\sim$7900 s$^{-1}$) 下的分离式霍普金森压杆实验. 实验结果表明,各工况下,应力应变曲线均呈现屈服-$\!$-应变硬化特征,HTPB CBBG 保持高韧性. 提高应变率和降低温度均导致相同应变下的应力幅值上升,但温度较应变率对HTPB CBBG 冲击压缩力学性能的影响更为显著. 基于所研究温度范围高于 HTPB CBBG 玻璃化转变温度,通过将水平、垂直移位因子与温度的关系表示为 WLF 方程的形式,将时温等效原理引入协同模型,并计及内应力的应变率增强效应,提出了一种新的屈服应力模型.选取参考温度,利用水平、垂直移位因子-$\!$-温度曲线和屈服应力主曲线拟合模型参数.模型预测值与实验数据对比结果表明:该模型可准确表征 233$\sim$323 K 时 HTPB CBBG 屈服应力的双线性应变率相关性,明确了较低和较高应变率时,应变率效应分别主要由内应力和驱动力贡献.   相似文献   

18.
High-speed experiments were conducted to characterize the deformation and failure of Styrene Butadiene Rubber at impact rates. Dynamic tensile stress–strain curves of uniaxial strip specimens and force–extension curves of thin sheets were obtained from a Charpy tensile impact apparatus. Results from the uniaxial tension tests indicated that although the rubber became stiffer with increasing strain rates, the stress–strain curves remained virtually the same above 280 s−1. Above this critical strain rate, strength, fracture strain and toughness decreased with increasing strain rates. When strain rates were below 180 s−1, the initial modulus, tensile strength and breaking extension increased as the strain rate increased. Between strain rates of 180 and 280 s−1, the initial modulus and tensile strength increased with increasing strain rates but the extension at break decreased with increasing strain rates. A hyper-viscoelastic constitutive relation of integral form was used to describe the rate-dependent material behavior of the rubber. Two characteristic relaxation times, 5 ms and 0.25 ms, were needed to fit the proposed constitutive equation to the data. The proposed constitutive equation was implemented in ABAQUS Explicit via a user-defined subroutine and used to predict the dynamic response of the rubber sheets in the experiments. Numerical predictions for the transient deformation and failure of the rubber sheet were within 10% of experimental results.  相似文献   

19.
The material properties of an oxygen-free high thermal conductivity (OFHC) film with a thickness of 0.1 mm were evaluated at strain rates ranging from 10−3/s to 103/s using a high-speed material micro-testing machine (HSMMTM). The high strain-rate material properties of thin films are important especially for an evaluation of the structural reliability of micro-formed parts and MEMS products. The high strain-rate material testing methods of thin films, however, have yet to be established to the point that the testing methods of larger specimens for electronics, auto-body, train, ship, and ocean structures are. For evaluation, a new type of HSMMTM was developed to conduct high-speed tensile tests of thin films. This machine is capable of testing at a sufficiently high tensile speed with an electromagnetic actuator, a novel gripping mechanism, and an accurate load measurement system. The OFHC copper film shows high strain-rate sensitivity in terms of the flow stress, fracture elongation, and strain hardening. These measures increase as the tensile strain rate increases. The rate-dependent material properties of an OFHC copper film are also compared with those of a bulk OFHC copper sheet with a thickness of 1 mm. The flow stress of an OFHC copper film is relatively low compared to that of a bulk OFHC copper sheet in the entire range of strain rates, while the fracture elongation of an OFHC copper film is much larger than that of a bulk OFHC copper sheet. A quantitative comparison would provide material data at high strain rates for the design and analysis of micro-appliances and different types of micro-equipment.  相似文献   

20.
Stress–strain response under constant and variable strain-rate is studied for selected models of inelastic behavior. The derived closed-form solutions for uniaxial loading enable simple evaluation of the strain-rate effects on the material response. The effect of an abrupt change of strain-rate is also examined. Non-Newtonian viscosity which decreases with an increasing strain-rate is incorporated in the analysis. Parabolic and hyperbolic hardening are used to describe the plastic response in monotonic loading. A three-dimensional generalization of an elastic–viscoplastic model is employed to study the stress relaxation in simple shear. A combined isotropic–kinematic hardening and the concept of overstress are used in the analysis. The unloading nonlinearity of the stress–strain curve is then discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号