首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
《Discrete Mathematics》2021,344(12):112604
A well-known theorem of Vizing states that if G is a simple graph with maximum degree Δ, then the chromatic index χ(G) of G is Δ or Δ+1. A graph G is class 1 if χ(G)=Δ, and class 2 if χ(G)=Δ+1; G is Δ-critical if it is connected, class 2 and χ(Ge)<χ(G) for every eE(G). A long-standing conjecture of Vizing from 1968 states that every Δ-critical graph on n vertices has at least (n(Δ1)+3)/2 edges. We initiate the study of determining the minimum number of edges of class 1 graphs G, in addition, χ(G+e)=χ(G)+1 for every eE(G). Such graphs have intimate relation to (P3;k)-co-critical graphs, where a non-complete graph G is (P3;k)-co-critical if there exists a k-coloring of E(G) such that G does not contain a monochromatic copy of P3 but every k-coloring of E(G+e) contains a monochromatic copy of P3 for every eE(G). We use the bound on the size of the aforementioned class 1 graphs to study the minimum number of edges over all (P3;k)-co-critical graphs. We prove that if G is a (P3;k)-co-critical graph on nk+2 vertices, thene(G)k2(nk2ε)+(k/2+ε2), where ε is the remainder of nk/2 when divided by 2. This bound is best possible for all k1 and n3k/2+2.  相似文献   

8.
9.
10.
11.
12.
13.
14.
《Discrete Mathematics》2023,346(4):113304
In 1965 Erd?s asked, what is the largest size of a family of k-element subsets of an n-element set that does not contain a matching of size s+1? In this note, we improve upon a recent result of Frankl and resolve this problem for s>101k3 and (s+1)k?n<(s+1)(k+1100k).  相似文献   

15.
16.
《Discrete Mathematics》2022,345(4):112774
Chvátal and Erdös (1972) [5] proved that, for a k-connected graph G, if the stability number α(G)k?s, then G is Hamilton-connected (s=1) or Hamiltonian (s=0) or traceable (s=?1). Motivated by the result, we focus on tight sufficient spectral conditions for k-connected graphs to possess Hamiltonian s-properties. We say that a graph possesses Hamiltonian s-properties, which means that the graph is Hamilton-connected if s=1, Hamiltonian if s=0, and traceable if s=?1.For a real number a0, and for a k-connected graph G with order n, degree diagonal matrix D(G) and adjacency matrix A(G), we have identified best possible upper bounds for the spectral radius λ1(aD(Γ)+A(Γ)), where Γ is either G or the complement of G, to warrant that G possesses Hamiltonian s-properties. Sufficient conditions for a graph G to possess Hamiltonian s-properties in terms of upper bounds for the Laplacian spectral radius as well as lower bounds of the algebraic connectivity of G are also obtained. Other best possible spectral conditions for Hamiltonian s-properties are also discussed.  相似文献   

17.
18.
19.
《Discrete Mathematics》2022,345(2):112675
We consider the binomial random graph G(n,p), where p is a constant, and answer the following two questions.First, given e(k)=p(k2)+O(k), what is the maximum k such that a.a.s. the binomial random graph G(n,p) has an induced subgraph with k vertices and e(k) edges? We prove that this maximum is not concentrated in any finite set (in contrast to the case of a small e(k)). Moreover, for every constant C>0, with probability bounded away from 0, the size of the concentration set is bigger than Cn/ln?n, and, for every ωn, a.a.s. it is smaller than ωnn/ln?n.Second, given k>εn, what is the maximum μ such that a.a.s. the set of sizes of k-vertex subgraphs of G(n,p) contains a full interval of length μ? The answer is μ=Θ((n?k)nln?(nk)).  相似文献   

20.
《Discrete Mathematics》2023,346(5):113344
For any positive integer k, let C(k) denote the least integer such that any n-vertex graph has an induced subgraph with at least n?C(k) vertices, in which at least min?{k,n?C(k)} vertices are of the same degree. Caro, Shapira and Yuster initially studied this parameter and showed that Ω(klog?k)C(k)(8k)k. For the first nontrivial case, the authors proved that 3C(3)6, and the exact value was left as an open problem. In this paper, we first show that 3C(3)4, improving the former result as well as a recent result of Kogan. For special families of graphs, we prove that C(3)=3 for K5-free graphs, and C(3)=1 for large C2s+1-free graphs. In addition, extending a result of Erd?s, Fajtlowicz and Staton, we assert that every Kr-free graph is an induced subgraph of a Kr-free graph in which no degree occurs more than three times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号