首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new plasticity integration algorithm is proposed based upon observations from the closed form integration of a generalized quadratic yield function over a single time step. The key to the approach is specification of the normal to the plastic flow potential as a function of the current state and strain increment. This uniquely defines the direction of the stress tensor for a convex, non-faceted flow potential. The stress magnitude and plastic strain increment are computed to satisfy the yield function. A non-quadratic, isotropic, associative flow model is coded to demonstrate accuracy and time step convergence following a step change in loading path. The model is used in additional simulations of strain localization in an expanding ring and a perforated plate.  相似文献   

2.
A polar-coordinate representation of the yield surface in principal stress space is utilized to formulate constitutive equations for plane-stress plasticity of orthotropic sheets. The yield function and the associated flow rule are analysed by taking account of the orientation of the principal stress axes, and conditions for internal consistency of the model are derived. An orthotropic yield criterion is proposed, which is devised as an extension of a previous isotropic yield function involving the second and third invariants of the deviatoric stress tensor. Comparisons with micro-macro computations and experimental measurements of yield surfaces are discussed.  相似文献   

3.
A new plane stress yield function that well describes the anisotropic behavior of sheet metals, in particular, aluminum alloy sheets, was proposed. The anisotropy of the function was introduced in the formulation using two linear transformations on the Cauchy stress tensor. It was shown that the accuracy of this new function was similar to that of other recently proposed non-quadratic yield functions. Moreover, it was proved that the function is convex in stress space. A new experiment was proposed to obtain one of the anisotropy coefficients. This new formulation is expected to be particularly suitable for finite element (FE) modeling simulations of sheet forming processes for aluminum alloy sheets.  相似文献   

4.
A finite strain constitutive model to predict the deformation behaviour of orthotropic metals is developed in this paper. The important features of this constitutive model are the multiplicative decomposition of the deformation gradient and a new Mandel stress tensor combined with the new stress tensor decomposition generalized into deviatoric and spherical parts. The elastic free energy function and the yield function are defined within an invariant theory by means of the structural tensors. The Hill’s yield criterion is adopted to characterize plastic orthotropy, and the thermally micromechanical-based model, Mechanical Threshold Model (MTS) is used as a referential curve to control the yield surface expansion using an isotropic plastic hardening assumption. The model complexity is further extended by coupling the formulation with the shock equation of state (EOS). The proposed formulation is integrated in the isoclinic configuration and allows for a unique treatment for elastic and plastic anisotropy. The effects of elastic anisotropy are taken into account through the stress tensor decomposition and plastic anisotropy through yield surface defined in the generalized deviatoric plane perpendicular to the generalized pressure. The proposed formulation of this work is implemented into the Lawrence Livermore National Laboratory-DYNA3D code by the modification of several subroutines in the code. The capability of the new constitutive model to capture strain rate and temperature sensitivity is then validated. The final part of this process is a comparison of the results generated by the proposed constitutive model against the available experimental data from both the Plate Impact test and Taylor Cylinder Impact test. A good agreement between experimental and simulation is obtained in each test.  相似文献   

5.
On the basis of a phenomenological theory which is guided by the results on the macroscopic material behavior, a nonlinear constitutive equation is derived to characterize the photoviscoelastic behavior of homogeneous, isotropic, and nonaging amorphous plastics, including large deformations. It is shown how to determine four memory functions by running creep tests in pure tension and simple shear. The testing equipment and the methods of test evaluation are explained. Results are reported for some typical materials. They show how to simplify the basic equation for applications in the analysis of plane states of stress in polymeric structures under quasistatic isothermal loading conditions.  相似文献   

6.
万征  孟达  宋琛琛 《力学学报》2019,51(5):1545-1556
土壤材料是一种典型的摩擦型材料,然而天然岩石却具有一定的凝聚力,而金属材料则完全是凝聚型材料. 在分析三种典型的材料强度准则表达式基础上,即SMP,Lade-Duncan以及广义Von-Mises准则,通过利用应力张量的不变量表达形式,提出了一种扩展准则即VML准则,该准则能够分别退化为上述3种典型准则. 在偏平面上,新准则能够描述从曲边三角形到圆形在内的多种开口形态;在子午面上,采用幂函数作为破坏准则公式,能够描述静水压力对于强度特性影响的非线性性质. 而对于土壤的屈服性质,岩土材料具有典型的压剪耦合特性,因此,为了描述剪切与等方向压缩两种路径下的体积耦合现象,采用水滴型屈服面作为屈服准则. 对于偏平面上的截面形状,讨论了给定球应力下偏应力强度值的分布形式及特点,讨论了应力罗德角对于偏平面上强度曲线的凹凸性的影响. 最后,通过多种材料的破坏与屈服试验成果,用所提新准则进行了验证. 通过强度以及屈服特性测试对比,验证了所提VML准则的合理性.   相似文献   

7.
The nonlinear elastic response of a class of materials for which the deformation is subject to an internal material constraint described in experiments by James F. Bell on the finite deformation of a variety of metals is investigated. The purely kinematical consequences of the Bell constraint are discussed, and restrictions on the full range of compatible deformations are presented in geometrical terms. Then various forms of the constitutive equation relating the stress and stretch tensors for an isotropic elastic Bell material are presented. Inequalities on the mechanical response functions are introduced. The importance of these in applications is demonstrated in several examples throughout the paper.This paper focuses on homogeneous deformations. In a simple illustration of the theory, a generalized form of Bell's empirical rule for uniaxial loading is derived, and some peculiarities in the response under all-around compressive loading are discussed. General formulae for universal relations possible in an isotropic elastic, Bell constrained material are presented. A simple method for the determination of the left stretch tensor for essentially plane problems is illustrated in the solution of the problem of pure shear of a materially uniform rectangular block. A general formula which includes the empirical rule found in pure shear experiments by Bell is derived as a special case. The whole apparatus is then applied in the solution of the general problem of a homogeneous simple shear superimposed on a uniform triaxial stretch; and the great variety of results possible in an isotropic, elastic Bell material is illustrated. The problem of the finite torsion and extension of a thin-walled cylindrical tube is investigated. The results are shown to be consistent with Bell's data for which the rigid body rotation is found to be quite small compared with the gross deformation of the tube. Several universal formulas relating various kinds of stress components to the deformation independently of the material response functions are derived, including a universal rule relating the axial force to the torque.Constitutive equations for hyperelastic Bell materials are derived. The empirical work function studied by Bell is introduced; and a new constitutive equation is derived, which we name Bell's law. On the basis of this law, we then derive exactly Bell's parabolic laws for uniaxial loading and for pure shear. Also, form Bell's law, a simple constitutive equation relating Bell's deviatoric stress tensor to his finite deviatoric strain tensor is obtained. We thereby derive Bell's invariant parabolic law relating the deviatoric stress intensity to the corresponding strain intensity; and, finally, Bell's fundamental law for the work function expressed in these terms is recovered. This rule is the foundation for all of Bell's own theoretical study of the isotropic materials cataloged in his finite strain experiments on metals, all consistent with the internal material constraint studied here.  相似文献   

8.
The main objective of this paper is to develop a generalized finite element formulation of stress integration method for non-quadratic yield functions and potentials with mixed nonlinear hardening under non-associated flow rule. Different approaches to analyze the anisotropic behavior of sheet materials were compared in this paper. The first model was based on a non-associated formulation with both quadratic yield and potential functions in the form of Hill’s (1948). The anisotropy coefficients in the yield and potential functions were determined from the yield stresses and r-values in different orientations, respectively. The second model was an associated non-quadratic model (Yld2000-2d) proposed by Barlat et al. (2003). The anisotropy in this model was introduced by using two linear transformations on the stress tensor. The third model was a non-quadratic non-associated model in which the yield function was defined based on Yld91 proposed by Barlat et al. (1991) and the potential function was defined based on Yld89 proposed by Barlat and Lian (1989). Anisotropy coefficients of Yld91 and Yld89 functions were determined by yield stresses and r-values, respectively. The formulations for the three models were derived for the mixed isotropic-nonlinear kinematic hardening framework that is more suitable for cyclic loadings (though it can easily be derived for pure isotropic hardening). After developing a general non-associated mixed hardening numerical stress integration algorithm based on backward-Euler method, all models were implemented in the commercial finite element code ABAQUS as user-defined material subroutines. Different sheet metal forming simulations were performed with these anisotropic models: cup drawing processes and springback of channel draw processes with different drawbead penetrations. The earing profiles and the springback results obtained from simulations with the three different models were compared with experimental results, while the computational costs were compared. Also, in-plane cyclic tension–compression tests for the extraction of the mixed hardening parameters used in the springback simulations were performed for two sheet materials.  相似文献   

9.
Polymeric composite sandwich structures, often manufactured using a thick foam core material and thin composite facings, are of significant interest in naval applications. This paper summarizes the coupled effect of sea water and low temperature on the mechanical properties of closed cell polymeric H100 foam core material. The study considers the effects of harsh sea environmental conditions on the fracture and deformation behavior of such a foam material under complex loading conditions that include tension, torsion, compression, and true-triaxial stress paths. Mechanical testing techniques are developed using coupon samples of suitable geometry that minimize grip effects on these low density complex foam materials, along with information associated with the observed cross-anisotropic behavior. Interfacial delamination fracture response for the sandwich structures due to the combined effects of sea water and low temperature are evaluated and the associated degradation in critical energy release rate for delamination is found to be substantial. Experimental data for H100 foam cores associated with moisture induced expansional strains are also included.  相似文献   

10.
In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials is derived. The evolution equation for the active yield surface with reference to the memory yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function for pressure insensitive and sensitive materials. Detailed incremental constitutive relations for materials based on the Mises yield function, the Hill quadratic anisotropic yield function and the Drucker–Prager yield function are derived as the special cases. The closed-form solutions for one-dimensional stress–plastic strain curves are also derived and plotted for materials under cyclic loading conditions based on the three yield functions. In addition, the closed-form solutions for one-dimensional stress–plastic strain curves for materials based on the isotropic Cazacu–Barlat yield function under cyclic loading conditions are summarized and presented. For materials based on the Mises and the Hill anisotropic yield functions, the stress–plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. For materials based on the Drucker–Prager and Cazacu–Barlat yield functions, the stress–plastic strain curves do not close and show the ratcheting effect under uniaxial cyclic loading conditions. The ratcheting effect is due to different strain ranges for a given stress range for the unloading and reloading processes. With these closed-form solutions, the important effects of the yield surface geometry on the cyclic plastic behavior due to the pressure-sensitive yielding or the unsymmetric behavior in tension and compression can be shown unambiguously. The closed form solutions for the Drucker–Prager and Cazacu–Barlat yield functions with the associated flow rule also suggest that a more general anisotropic hardening theory needs to be developed to address the ratcheting effects for a given stress range.  相似文献   

11.
A framework for compressible elastoplasticity is cultivated to proficiently characterize various loading states of an isotropic solid undergoing a full range of deformation, including both hardening and softening behavior. By employing Legendre's dual transformation, it is shown that Drucker's path independence in the small and the linearity of rate change between stress and strain are characteristics of the additive-decomposition of strain rates. The normality property of the plastic strain rate to a loading function is established on the basis of path independence in the small of the potential functions used in the dual transformation. Work-hardening is a sufficient but not a necessary condition for ensuring stability in the small. Within this framework, a compressible elastoplasticity theory is generalized to cover the behavior of softening and elastoplastic coupling. Analysis results indicate that plastic instability for a void-contained aggregate is independent of the hydrostatic component of a stress tensor.  相似文献   

12.
13.
14.
A constitutive model for creep deformation that describes the loading-history-dependent behavior of initially isotropic materials with different properties in tension and compression under stress vector rotations limited by 50–60° is presented within a thermodynamic framework. In the proposed constitutive model a kinematic hardening rule is adopted. This model also introduces an effective equivalent stress in the creep potential that is based on the first and second invariants of the effective stress tensor, and on the joint invariant of the effective stress tensor and eigenvector associated with the maximum principal Cauchy stress. The formulation of the kinematic hardening rule is presented and discussed. All the material parameters in the model have been obtained from a series of proposed basic experiments with constant stresses. These model parameters are then used to predict the creep deformation of the aluminum alloy under multiaxial loading with constant stresses, and under non-proportional uniaxial and non-proportional multiaxial loadings for both isothermal and nonisothermal processes.  相似文献   

15.
复杂加载下混凝土的弹塑性本构模型   总被引:1,自引:0,他引:1  
万征  姚仰平  孟达 《力学学报》2016,48(5):1159-1171
混凝土材料在不同应力路径下或复杂加载条件下会表现出差异性显著的应力应变关系,在小幅循环加载条件下,其应力应变关系会表现出类似于弹性变形的滞回曲线.在不同应力水平下,混凝土的应力应变关系以及破坏特性都具有静水压力相关特点,即随着静水压力增大,各向异性强度特性弱化.此外,混凝土受压及受拉破坏机理不同,因而对应于混凝土硬化损伤亦有不同,即可分为受压硬化损伤,受拉硬化损伤及两者的混合硬化损伤类型.基于Hsieh模型,对该模型进行了三点改进.(1)针对小幅循环加载下混凝土无塑性变形的试验规律,而模型中在应力水平较低的循环加载条件下始终存在塑性变形的预测问题,采用在边界面模型框架下,设置了应力空间的弹性域,初始屈服面与后续临界状态屈服面几何相似的假定.(2)基于广义非线性强度准则将原模型采用变换应力方法将其推广为三维弹塑性本构模型,采用变换后模型可合理的考虑不同应力路径对于子午面以及偏平面上静水压力效应形成的影响,并避免了边界面应力点奇异问题.(3)分别对拉压两种加载损伤模式建议了相应的硬化参数表达式,可分别用于描述上述加载中产生的应变软化及强度退化行为.基于多种加载路径模拟表明:所建立的三维弹塑性本构模型可合理地用于描述混凝土的一般应力应变关系特性.   相似文献   

16.
The influence of biaxiality of the loading on the crystallographic orientation dependence of crystal stress distributions is examined for polycrystalline solids deformed well into the elastoplastic regime. The examination is couched in terms of two decompositions of the stress. The first is a split of the tensor into its hydrostatic and deviatoric components; the second is a spectral decomposition of the deviatoric stress from which we express the relative values of the principal components as a function of the biaxiality of the stress. Using the framework provided by these decompositions, we investigate trends observed in the lattice strains in polycrystals subjected to biaxial loadings, comparing strains measured by neutron diffraction with finite element simulations. We conclude by showing how the orientation dependence of the stress distributions is influenced by the load biaxiality and by connecting features of the distributions to the elastic and plastic properties of the crystals. Implications of the results are discussed relative to the modeling of strain hardening and defect initiation.  相似文献   

17.
18.
An improved model of material behavior is proposed that shows good agreement with experimental data for both yield and plastic strain ratios in uniaxial, equi-biaxial, and plane-strain tension under proportional loading for steel, aluminum and possibly other alloys. This model is based on a non-associated flow rule in which the plastic potential and yield surface functions are defined by quadratic functions of the stress tensor. The plastic potential aspect of the model is identical to that proposed by Hill for a quadratic anisotropic plastic potential defined in terms of measured r values. The new model differs in that the yield surface, although also defined by a quadratic function of the stress tensor, is defined independently of the plastic potential in terms of measured yield stresses. The model is developed and implemented in an FEM code that is based on a convected coordinate system. Since the associated flow rule, which assumes equivalency between the plastic potential and yield functions, is commonly accepted as a valid law in the theory of plastic deformation of most metals, the arguments for the associated flow rule are also discussed.  相似文献   

19.
Re-orientation of individual crystal glide planes, as isotropic surface ice is deformed during its passage to depth in an ice sheet, creates a fabric and associated anisotropy. We re-examine an orthotropic viscous law which was developed to reflect the induced anisotropy arising from the mean rotation of crystal axes during deformation. This expresses the deviatoric stress, the stress formulation, in terms of the strain-rate, strain, and three structure tensors based on the principal stretch axes, and involves two fabric response coefficient functions which determine the strength of the anisotropy. A validity condition implicitly relates the two response functions, so the model law has only one independent fabric response function. A modified formulation is now presented in which the two fabric response coefficients are expressed as functions of different invariant arguments, and the validity condition becomes an explicit algebraic relation between the two functions. The response can therefore be described explicitly in terms of a single fabric response function. An analogous orthotropic viscous law for the strain-rate, the strain-rate formulation, akin to the conventional “flow law” for isotropic ice, expressed in terms of the deviatoric stresss, strain and the three structure tensors, is also constructed. Correlations with complete (idealised) uni-axial compression and shearing responses are made for the stress formulation, to determine the fabric response function which would yield these responses. Received January 30, 2002 / Published online October 15, 2002 RID="*" ID="*" On leave from the Institute of Hydroengineering, Polish Academy of Sciences, ul. Waryńskiego 17, 71-310 Szczecin, Poland Communicated by Kolumban Hutter, Darmstadt  相似文献   

20.
Novel (non-quadratic) plasticity criteria based on Kelvin modes are formulated here for anisotropic materials. As an example, such a macroscopic criterion is applied with success to the case of FCC nickel-base single crystals. Indeed, relying on the cubic symmetry of the material, the Kelvin decomposition of elasticity tensor easily allows for the definition of an objective and loading independent criterion. The criterion identification is performed from different loading cases for CMSX2 single crystal superalloy. Tension-torsion yield surfaces at room temperature and yield stress dependence on crystal orientation are modeled. The Kelvin modes based criterion is compared to experimental data, to Hill and Barlat and coworkers macroscopic criteria and to Schmid law predictions. The results show that a simple three-parameter yield function built thanks to von Mises equivalent Kelvin stresses accounts for a satisfying plasticity criterion for such alloys.Non-quadratic norm ∥·∥a plasticity framework is addressed. Intrinsic generalizations of Hershey-Hosford criterion are proposed for cubic material symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号