首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于亚微米、纳米晶粒组织塑性变形过程中多种变形机制(位错机制、扩散机制及晶界滑动机制)共存,建立了理论模型,用于定量研究亚微米、纳米晶粒组织的塑性变形行为.以铜为模型材料,计算分析了晶粒尺度、应变率以及温度对亚微米、纳米晶粒组织塑性变形行为的影响.结果表明:相比粗晶铜,亚微米晶铜表现出明显的应变率敏感性,并且应变率敏感系数随晶粒尺度及变形速率的减小而增大;同时,增大变形速率或降低变形温度都能提高材料的应变硬化能力,延缓颈缩发生,进而提高材料的延性.计算分析结果与实验报道吻合.  相似文献   

2.
The effect of grain size on the tensile plastic deformation of ultrafine-grained copper polycrystals is investigated using a two-dimensional simulation of dislocation dynamics. Emphasis is put on the elementary mechanisms governing the yield stress in multislip conditions. Whatever the grain size, the yield stress is found to follow a Hall-Petch law. However, the elementary mechanism controlling slip transmission through the grain boundaries at yield is observed to change with the grain size. For the larger grain sizes, the stress concentrations due to dislocations piled-up at grain boundaries are responsible for the activation of plastic activity in the poorly stressed grains. For the smaller grain sizes, the pile-ups contain less dislocations and are less numerous, but the strain incompatibilities between grains become significant. They induce high internal stresses and favor multislip conditions in all grains. Based on these results, simple interpretations are proposed for the strengthening of the yield stress in ultrafine grained metals.  相似文献   

3.
The size dependent deformation of Cu single crystal micropillars with thickness ranging from 0.2 to 2.5 μm subjected to uniaxial compression is investigated using a Multi-scale Dislocation Dynamics Plasticity (MDDP) approach. MDDP is a hybrid elasto-viscoplastic simulation model which couples discrete dislocation dynamics at the micro-scale (software micro3d) with the macroscopic plastic deformation. Our results show that the deformation field in these micropillars is heterogeneous from the onset of plastic flow and is confined to few deformation bands, leading to the formation of ledges and stress concentrations at the surface of the specimen. Furthermore, the simulation yields a serrated stress–strain behavior consisting of discrete strain bursts that correlates well with experimental observations. The intermittent operation and stagnation of discrete dislocation arms is identified as the prominent mechanism that causes heterogeneous deformation and results in the observed macroscopic strain bursts. We show that the critical stress to bow an average maximum dislocation arm, whose length changes during deformation due to pinning events, is responsible for the observed size dependent response of the single crystals. We also reveal that hardening rates, similar to that shown experimentally, occur under relatively constant dislocation densities and are linked to dislocation stagnation due to the formation of entangled dislocation configuration and pinning sites.  相似文献   

4.
It is well documented that the highly heterogeneous deformation behaviour and lattice rotation typically observed within grains in a polycrystal are attributed to microstructural features such as grain structure, topology, size, etc. In this work, the effects of low- and high-angle grain boundaries on the mechanical behaviour of FCC polycrystals are investigated using a micro-mechanical model based on crystal plasticity theory. The constitutive framework relies on dislocation mechanics concepts to describe the plastic deformation behaviour of FCC metallic crystals and is validated by comparing the measured and predicted local and macroscopic deformation behaviour in a thin Al-0.5% Mg polycrystal tensile specimen containing a relatively small number of surface grains. Comparisons at the microscopic (e.g. local slip distribution) and macroscopic (e.g. average stress-strain response) levels elucidate the role of low-angle grain boundaries, which are found to have a profound effect on both the local and average deformation behaviour of FCC polycrystals with a small number of grains. However, this effect diminishes when the number of grains increases and becomes negligible in bulk polycrystals. In light of the widely accepted view that high-angle grain boundaries strongly influence the mechanical behaviour of very fine-grained metals, this work has shown that low-angle grain boundaries can also play an equally important role in the deformation behaviour of polycrystals with a relatively small number of grains.  相似文献   

5.
The intent of this work is to derive a physically motivated mathematical form for the gradient plasticity that can be used to interpret the size effects observed experimentally. The step of translating from the dislocation-based mechanics to a continuum formulation is explored. This paper addresses a possible, yet simple, link between the Taylor’s model of dislocation hardening and the strain gradient plasticity. Evolution equations for the densities of statistically stored dislocations and geometrically necessary dislocations are used to establish this linkage. The dislocation processes of generation, motion, immobilization, recovery, and annihilation are considered in which the geometric obstacles contribute to the storage of statistical dislocations. As a result, a physically sound relation for the material length scale parameter is obtained as a function of the course of plastic deformation, grain size, and a set of macroscopic and microscopic physical parameters. Comparisons are made of this theory with experiments on micro-torsion, micro-bending, and micro-indentation size effects.  相似文献   

6.
This paper considers the basic laws of localized plastic flow in solids obtained from an experimentally established relation invariant for plastic and elastic deformation that determine the propagation velocities of localized plasticity autowaves, the dispersion of these waves, and the dependence of the autowave length on the grain size. The relationship of the equations of localized plasticity and the equations of dislocation dynamics is established.  相似文献   

7.
Grain size is a critically important aspect of polycrystalline materials and experimental observations on Cu and Al polycrystals have shown that a Hall–Petch-type phenomenon does exist at the onset of plastic deformation. In this work, a parametric study is conducted to investigate the effect of microstructural and deformation-related length scales on the behaviour of such FCC polycrystals. It relies on a recently proposed non-local dislocation-mechanics based crystallographic theory to describe the evolution of dislocation mean spacings within each grain, and on finite element techniques to incorporate explicitly grain interaction effects. Polycrystals are modeled as representative volume elements (RVEs) containing up to 64 randomly oriented grains. Predictions obtained from RVEs of Cu polycrystals with different grain sizes are shown to be consistent with experimental data. Furthermore, mesh sensitivity studies revealed that, when there is a predominance of geometrically necessary dislocations relative to statistically stored dislocations, the polycrystal response becomes increasingly mesh sensitive. This was found to occur especially during the early stages of deformation in polycrystals with small grains.  相似文献   

8.
Superelastic deformation of thin Ni-Ti wires containing various nanograined microstructures was investigated by tensile cyclic loading with in situ evaluation of electric resistivity. Defects created by the superelastic cycling in these wires were analyzed by transmission electron microscopy. The role of dislocation slip in superelastic deformation is discussed. Ni-Ti wires having finest microstructures (grain diameter <100 nm) are highly resistant against dislocation slip, while those with fully recrystallized microstructure and grain size exceeding 200 nm are prone to dislocation slip. The density of the observed dislocation defects increases significantly with increasing grain size. The upper plateau stress of the superelastic stress-strain curves is largely grain size independent from 10 up to 1000 nm. It is hence claimed that the Hall-Petch relationship fails for the stress-induced martensitic transformation in this grain size range. It is proposed that dislocation slip taking place during superelastic cycling is responsible for the accumulated irreversible strains, cyclic instability and degradation of functional properties. No residual martensite phase was found in the microstructures of superelastically cycled wires by TEM and results of the in situ electric resistance measurements during straining also indirectly suggest that none or very little martensite phase remains in the studied cycled superelastic wires after unloading. The accumulation of dislocation defects, however, does not prevent the superelasticity. It only affects the shape of the stress-strain response, makes it unstable upon cycling and changes the deformation mode from localized to homogeneous. The activity of dislocation slip during superelastic deformation of Ni-Ti increases with increasing test temperature and ultimately destroys the superelasticity as the plateau stress approaches the yield stress for slip. Deformation twins in the austenite phase ({1 1 4} compound twins) were frequently found in cycled wires having largest grain size. It is proposed that they formed in the highly deformed B19′ martensite phase during forward loading and are retained in austenite after unloading. Such twinning would represent an additional deformation mechanism of Ni-Ti yielding residual irrecoverable strains.  相似文献   

9.
陈伟  谢普初  刘东升  史同亚  李治国  王永刚 《爆炸与冲击》2021,41(4):043102-1-043102-9
采用不同热处理工艺制备了3种晶粒尺寸(60、100、500 μm)的高纯铝板材,利用平板撞击实验研究了其层裂行为。通过改变飞片击靶速度,在靶板中实现初始层裂状态和完全层裂状态。基于自由面速度时程曲线和微损伤演化及断口显微形貌分析,讨论了晶粒尺寸对高纯铝板材层裂特性的影响规律。实验结果显示:(1)晶粒尺寸对高纯铝板材层裂特性的影响强烈依赖于冲击加载应力幅值,在低应力条件下,层裂强度与晶粒尺寸之间表现出反Hall-Petch关系,而在高应力条件下,晶粒尺寸对层裂强度几乎没有影响;(2)随着晶粒尺寸的增大,靶板损伤区微孔洞的尺寸和分布范围均增大,但数量显著减少,在微孔洞周围还发现比较严重的晶粒细化现象;(3)随着晶粒尺寸的增大,层裂微观机制从韧性沿晶断裂向准脆性沿晶断裂转变,且在断口上观察到少量随机分布的小圆球,归因于微孔洞长大和聚集过程中严重塑性变形引起的热效应。  相似文献   

10.
Two-dimensional dislocation dynamics (2D-DD) simulations under fully periodic boundary conditions are employed to study the relation between microstructure and strength of a material. The material is modeled as an elastic continuum that contains a defect microstructure consisting of a preexisting dislocation population, dislocation sources, and grain boundaries. The mechanical response of such a material is tested by uniaxially loading it up to a certain stress and allowing it to relax until the strain rate falls below a threshold. The total plastic strain obtained for a certain stress level yields the quasi-static stress-strain curve of the material. Besides assuming Frank-Read-like dislocation sources, we also investigate the influence of a pre-existing dislocation density on the flow stress of the model material. Our results show that - despite its inherent simplifications - the 2D-DD model yields material behavior that is consistent with the classical theories of Taylor and Hall-Petch. Consequently, if set up in a proper way, these models are suited to study plastic deformation of polycrystalline materials.  相似文献   

11.
Grain boundary influence on material properties becomes increasingly significant as grain size is reduced to the nanoscale. Nanostructured materials produced by severe plastic deformation techniques often contain a higher percentage of high-angle grain boundaries in a non-equilibrium or energetically metastable state. Differences in the mechanical behavior and observed deformation mechanisms are common due to deviations in grain boundary structure. Fundamental interfacial attributes such as atomic mobility and energy are affected due to a higher non-equilibrium state, which in turn affects deformation response. In this research, atomistic simulations employing a biased Monte Carlo method are used to approximate representative non-equilibrium bicrystalline grain boundaries based on an embedded atom method potential, leveraging the concept of excess free volume. An advantage of this approach is that non-equilibrium boundaries can be instantiated without the need of simulating numerous defect/grain boundary interactions. Differences in grain boundary structure and deformation response are investigated as a function of non-equilibrium state using Molecular Dynamics. A detailed comparison between copper and aluminum bicrystals is provided with regard to boundary strength, observed deformation mechanisms, and stress-assisted free volume evolution during both tensile and shear simulations.  相似文献   

12.
A combined finite element (FE) simulation and discrete dislocation dynamics (DD) approach has been developed in this paper to investigate the dynamic deformation of single-crystal copper at mesoscale. The DD code yields the plastic strain based on the slip of dislocations and serves as a substitute for the 3D constitutive form used in the usual FE computation, which is implemented into ABAQUS/Standard with a user-defined material subroutine. On the other hand, the FE code computes the displacement and stress field during the dynamic deformation. The loading rate effects on the yield stress and the deformation patterning of single-crystal copper are investigated. With the increasing of strain rate, the yield stress of single-crystal copper increases rapidly. A critical strain rate exists in each single-crystal copper block for the given size and dislocation sources, below which the yield stress is relatively insensitive to the strain rate. The dislocation patterning changes from non-uniform to uniform under high-strain-rate. The shear stresses in the bands are higher than that in the neighboring regions, which are formed shear bands in the crystal. The band width increases with the strain rate, which often take places where the damage occurs.  相似文献   

13.
Typically, intergranular constraint relations of various sorts are introduced to improve the accuracy of prediction of texture evolution and macroscale stress–strain behavior of metallic polycrystals within the context of simple polycrystal averaging schemes. This paper examines the capability of a 3-D polycrystal plasticity theory (Kocks, U.F., Kallend, J.S., Wank, H.-R., Rollett, A.D. and Wright, S.I. (1994), popLA, Preferred Orientation Package—Los Alamos. LANL LA-CC-89-18), based on the Taylor assumption of uniform deformation among grains, to predict texture evolution and stress–strain behavior for complex finite deformation loading paths of OFHC Cu. Compression, shear and sequences of deformation path are considered. It is shown that the evolution of texture is too rapid and that the intensity of peaks is more pronounced than for experimentally measured pole figures. Comparisons of both stress–strain behavior and texture evolution are made with experiments, with and without the inclusion of latent hardening effects. It is argued that grain subdivision processes accommodate intergranular kinematical constraints, leading to the notion of a generalized Taylor constraint that considers the distribution of subgrain orientations. The subdivision process is assumed to follow the experimentally observed refinement of low energy dislocation structures associated with geometrically necessary dislocations. A modification of the kinematical structure of crystal plasticity is proposed based on generation of geometrically necessary dislocations that accommodate a fraction of the plastic stretch and rotation at the scale of a grain.  相似文献   

14.
Single crystal plasticity based on a representative characteristic length is proposed and introduced into a homogenization approach based on finite element analyses, which are applied to characterization of distinctive yielding behaviors of polycrystalline metals, yield-point elongation, and grain size strengthening. The computational manner for an implicit stress update is derived with the framework of a standard multi-surface plasticity at finite strain, where the evolution of the characteristic lengths are numerically converted from the accumulated slips of all of slip systems by exploiting the mathematical feature of the characteristic length as the intermediate function of the plastic internal variables. Furthermore, a constitutive model for a single crystal reproduces the stress–strain curve divided into three parts. Using two-scale finite element analysis, the macroscopic stress–strain response with yield-point elongation under a situation of low dislocation density is reproduced. Finally, the grain size effect on the yield strength is analyzed with modeling of the grain boundary in the context of the proposed constitutive model and is discussed from both macroscopic and microscopic views.  相似文献   

15.
A computation using crystal plasticity modeling of an actual IF steel aggregate plane strain compression deformation, underlines the formation of different deformation bands morphologies and grain splitting occurrence, already experimentally observed by different authors. The model based on dislocation densities as internal variables, developed in the framework of finite deformation and implemented in the Finite Element Method, is able to capture the main characteristics of different inhomogeneities and to analyze their formation and further development with strain, from the determination of the active and latent slip systems, and also from the quantification of their dislocation densities and corresponding glide rates evolutions. The respective boundary conditions and material properties effects are discussed.  相似文献   

16.
Nanoindentation is a widely used technique to characterize mechanical properties of materials in small volumes. When the sample size is comparable to the indent size, the indentation-induced plastic zone can be affected by the sample boundary which may cause inaccurate interpretation of the mechanical properties. In this study, the sample boundary effect is investigated by performing experiments and atomistic simulations of nanoindentation into nano- and micro-scale Au pillars and bulk Au (0 0 1) surfaces. In experiments, a more compliant deformation is observed in pillar indentations compared to bulk Au. The elastic modulus decreases with increasing indent size over sample size ratio. Atomistic simulations are performed to gain insights on the mechanisms of pillar deformation and pillar boundary effect. The reduced modulus has a similar trend of decrease with increasing indent size over sample size ratio. Significantly different dislocation activities and dislocation interactions with the pillar boundary contribute to the lower value of the reduced modulus in the pillar indentation. The presence of the free surface would allow the dislocations to annihilate, causing a higher plastic recovery during the pillar unloading process.  相似文献   

17.
Heterogeneous plastic deformation behavior of a coarse-grained Al-0.5%Mg multicrystal was investigated experimentally at the individual grain level. A flat uniaxial tensile specimen consisting of a single layer of millimeter-sized grains was deformed quasi-statically up to an axial strain of 15% at room temperature. The initial local crystallographic orientations of the grains and their evolutions after 5, 12, and 15% plastic strains were measured by electron backscattered diffraction pattern analysis in a scanning electron microscope. The local in-plane plastic strains and rigid body rotations of the grains were measured by correlation of digital optical video images of the specimen surface acquired during the tensile test. It is found that both intergranular and intragranular plastic deformation fields in the aluminum multicrystal specimen under uniaxial tension are highly heterogeneous. Single or double sets of slip-plane traces were predominantly observed on the electro-polished surfaces of the millimeter-sized grains after deformation. The active slip systems associated with these observed slip-plane traces were identified based on the grain orientation after deformation, the Schmid factor, and grain interactions in terms of the slip-plane trace morphology at grain boundaries. It is found that the aluminum multicrystal obeys neither the Sachs nor the Taylor polycrystal deformation models but deforms heterogeneously to favor easy slip transmission and accommodation among the grains.  相似文献   

18.
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and micro-devices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either ‘microhard’ (impenetrable to dislocations) or ‘microfree’ (an infinite dislocation sink).  相似文献   

19.
Nanoindentation experiments have shown that microstructural inhomogeneities across the surface of gold thin films lead to position-dependent nanoindentation behavior [Phys. Rev. B (2002), to be submitted]. The rationale for such behavior was based on the availability of dislocation sources at the grain boundary for initiating plasticity. In order to verify or refute this theory, a computational approach has been pursued. Here, a simulation study of the initial stages of indentation using the embedded atom method (EAM) is presented. First, the principles of the EAM are given, and a comparison is made between atomistic simulations and continuum models for elastic deformation. Then, the mechanism of dislocation nucleation in single crystalline gold is analyzed, and the effects of elastic anisotropy are considered. Finally, a systematic study of the indentation response in the proximity of a high angle, high sigma (low symmetry) grain boundary is presented; indentation behavior is simulated for varying indenter positions relative to the boundary. The results indicate that high angle grain boundaries are a ready source of dislocations in indentation-induced deformation.  相似文献   

20.
The increasing application of plane-strain testing at the (sub-) micron length scale of materials that comprise elastically anisotropic cubic crystals has motivated the development of an anisotropic two-dimensional discrete dislocation plasticity (2D DDP) method. The method relies on the observation that plane-strain plastic deformation of cubic crystals is possible in specific orientations when described in terms of edge dislocations on three effective slip systems. The displacement and stress fields of such dislocations in an unbounded anisotropic crystal are recapitulated, and we propose modified constitutive rules for the discrete dislocation dynamics of anisotropic single crystals. Subsequently, to handle polycrystalline problems, we follow an idea of O’Day and Curtin (J. Appl. Mech. 71 (2004) 805–815) and treat each grain as a plastic domain, and adopt superposition to determine the overall response. This method allows for a computationally efficient analysis of micro-scale size effects. As an application, we study freestanding thin copper films under plane-strain tension. First, the computational framework is validated for the special case of isotropic thin films modeled by means of a standard 2D DDP method. Next, predictions of size dependent plastic behavior in anisotropic columnar-grained thin films with varying thickness/grain size are presented and compared with the isotropic results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号