首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we consider a queue whose service speed changes according to an external environment that is governed by a Markov process. It is possible that the server changes its service speed many times while serving a customer. We derive first and second moments of the service time of customers in system using first step analysis to obtain an insight on the service process. In fact, we obtain an intriguing result in that the moments of service time actually depend on the arrival process! We also show that the mean service rate is not the reciprocal of the mean service time. Further, since it is not possible to obtain a closed form expression for the queue length distribution, we use matrix geometric methods to compute performance measures such as average queue length and waiting time. We apply the method of large deviations to obtain tail distributions of the workload in the queue using the concept of effective bandwidth. We present two applications in computer systems: (1) Web server with multi-class requests and (2) CPU with multiple processes. We illustrate the analysis and various methods discussed with the help of numerical examples for the above two applications. AMS subject classification: 90B22, 68M20  相似文献   

2.
We consider a closed queueing network, consisting of two FCFS single server queues in series: a queue with general service times and a queue with exponential service times. A fixed number \(N\) of customers cycle through this network. We determine the joint sojourn time distribution of a tagged customer in, first, the general queue and, then, the exponential queue. Subsequently, we indicate how the approach toward this closed system also allows us to study the joint sojourn time distribution of a tagged customer in the equivalent open two-queue system, consisting of FCFS single server queues with general and exponential service times, respectively, in the case that the input process to the first queue is a Poisson process.  相似文献   

3.
Eliazar  Iddo  Fibich  Gadi  Yechiali  Uri 《Queueing Systems》2002,42(4):325-353
Two random traffic streams are competing for the service time of a single server (multiplexer). The streams form two queues, primary (queue 1) and secondary (queue 0). The primary queue is served exhaustively, after which the server switches over to queue 0. The duration of time the server resides in the secondary queue is determined by the dynamic evolution in queue 1. If there is an arrival to queue 1 while the server is still working in queue 0, the latter is immediately gated, and the server completes service there only to the gated jobs, upon which it switches back to the primary queue. We formulate this system as a two-queue polling model with a single alternating server and with randomly-timed gated (RTG) service discipline in queue 0, where the timer there depends on the arrival stream to the primary queue. We derive Laplace–Stieltjes transforms and generating functions for various key variables and calculate numerous performance measures such as mean queue sizes at polling instants and at an arbitrary moment, mean busy period duration and mean cycle time length, expected number of messages transmitted during a busy period and mean waiting times. Finally, we present graphs of numerical results comparing the mean waiting times in the two queues as functions of the relative loads, showing the effect of the RTG regime.  相似文献   

4.
We consider an infinite-buffer single server queue where arrivals occur according to a batch Markovian arrival process (BMAP). The server serves until system emptied and after that server takes a vacation. The server will take a maximum number H of vacations until either he finds at least one customer in the queue or the server has exhaustively taken all the vacations. We obtain queue length distributions at various epochs such as, service completion/vacation termination, pre-arrival, arbitrary, departure, etc. Some important performance measures, like mean queue lengths and mean waiting times, etc. have been obtained. Several other vacation queueing models like, single and multiple vacation model, queues with exceptional first vacation time, etc. can be considered as special cases of our model.  相似文献   

5.
具有位相型修理的离散时间可修排队系统   总被引:1,自引:0,他引:1  
本文研究了具有一般独立输入,位相型修理的离散时间可修排队系统,假定服务台对顾客的服务时间和服务台寿命服从几何分布,运用矩阵解析方法我们给出系统嵌入在到达时刻的稳态队长分布和等待时间分布,并证明这些分布均为离散位相型分布.我们也得到在广义服务时间内服务台发生故障次数的分布,证明它服从一个修正的几何分布.我们对离散时间可修排队与连续时间可修排队进行了比较,说明这两种排队系统在一些性能指标方面的区别之处.最后我们通过一些数值例子说明在这类系统中顾客的到达过程、服务时间和服务台的故障率之间的关系.  相似文献   

6.
We consider a polling model of two M/G/1 queues, served by a single server. The service policy for this polling model is of threshold type. Service at queue 1 is exhaustive. Service at queue 2 is exhaustive unless the size of queue 1 reaches some level T during a service at queue 2; in the latter case the server switches to queue 1 at the end of that service. Both zero- and nonzero switchover times are considered. We derive exact expressions for the joint queue length distribution at customer departure epochs, and for the steady-state queue-length and sojourn time distributions. In addition, we supply a simple and very accurate approximation for the mean queue lengths, which is suitable for optimization purposes.  相似文献   

7.
We consider a polling model in which a number of queues are served, in cyclic order, by a single server. Each queue has its own distinct Poisson arrival stream, service time, and switchover time (the server's travel time from that queue to the next) distribution. A setup time is incurred if the polled queue has one or more customers present. This is the polling model with State-Dependent service (the SD model). The SD model is inherently complex; hence, it has often been approximated by the much simpler model with State-Independent service (the SI model) in which the server always sets up for a service at the polled queue, regardless of whether it has customers or not. We provide an exact analysis of the SD model and obtain the probability generating function of the joint queue length distribution at a polling epoch, from which the moments of the waiting times at the various queues are obtained. A number of numerical examples are presented, to reveal conditions under which the SD model could perform worse than the corresponding SI model or, alternately, conditions under which the SD model performs better than a corresponding model in which all setup times are zero. We also present expressions for a variant of the SD model, namely, the SD model with a patient server.  相似文献   

8.
Feng  W.  Kowada  M.  Adachi  K. 《Queueing Systems》1998,30(3-4):405-434
In this paper, we present a detailed analysis of a cyclic-service queueing system consisting of two parallel queues, and a single server. The server serves the two queues with a Bernoulli service schedule described as follows. At the beginning of each visit to a queue, the server always serves a customer. At each epoch of service completion in the ith queue at which the queue is not empty, the server makes a random decision: with probability pi, it serves the next customer; with probability 1-pi, it switches to the other queue. The server takes switching times in its transition from one queue to the other. We derive the generating functions of the joint stationary queue-length distribution at service completion instants, by using the approach of the boundary value problem for complex variables. We also determine the Laplace-Stieltjes transforms of waiting time distributions for both queues, and obtain their mean waiting times. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
We study the behavior of a single-server discrete-time queue with batch arrivals, where the information on the queue length and possibly on service completions is delayed. Such a model describes situations arising in high speed telecommunication systems, where information arrives in messages, each comprising a variable number of fixed-length packets, and it takes one unit of time (a slot) to transmit a packet. Since it is not desirable to attempt service when the system may be empty, we study a model where we assume that service is attempted only if, given the information available to the server, it is certain that there are messages in the queue. We characterize the probability distribution of the number of messages in the queue under some general stationarity assumptions on the arrival process, when information on the queue size is delayedK slots, and derive explicit expressions of the PGF of the queue length for the case of i.i.d. batch arrivals and general independent service times. We further derive the PGF of the queue size when information onboth the queue length and service completion is delayedK=1 units of time. Finally, we extend the results to priority queues and show that when all messages are of unit length, thec rule remains optimal even in the case of delayed information.  相似文献   

10.
We consider a finite capacity queueing system with one main server who is supported by a backup server. We assume Markovian arrivals, phase type services, and a threshold-type server backup policy with two pre-determined lower and upper thresholds. A request for a backup server is made whenever the buffer size (number of customers in the queue) hits the upper threshold and the backup server is released from the system when the buffer size drops to the lower threshold or fewer at a service completion of the backup server. The request time for the backup server is assumed to be exponentially distributed. For this queuing model we perform the steady state analysis and derive a number of performance measures. We show that the busy periods of the main and backup servers, the waiting times in the queue and in the system, are of phase type. We develop a cost model to obtain the optimal threshold values and study the impact of fixed and variable costs for the backup server on the optimal server backup decisions. We show that the impact of standard deviations of the interarrival and service time distributions on the server backup decisions is quite different for small and large values of the arrival rates. In addition, the pattern of use of the backup server is very different when the arrivals are positively correlated compared to mutually independent arrivals.  相似文献   

11.
We consider a two-queue polling model in which customers upon arrival join the shorter of two queues. Customers arrive according to a Poisson process and the service times in both queues are independent and identically distributed random variables having the exponential distribution. The two-dimensional process of the numbers of customers at the queue where the server is and at the other queue is a two-dimensional Markov process. We derive its equilibrium distribution using two methodologies: the compensation approach and a reduction to a boundary value problem.  相似文献   

12.
Peköz  Erol A.  Lapré  Michael 《Queueing Systems》2001,37(4):337-347
We study a multi-class queue with a learning server who becomes stochastically faster with each subsequent customer served of the same type in a row, and returns to some baseline speed each time he switches to a different type of customer. We show under some conditions that customer waiting time is larger (in the increasing convex ordering sense) with server learning than in a queue with iid service times having the same marginal service distribution as the learning server. An easy to evaluate inequality for the mean stationary waiting time is derived from this in the case of Poisson arrivals, and results in more general settings are given. The primary tool used in the proofs is the supermodularity of the delay in queue as a function of previous service times.  相似文献   

13.
Sharma  Vinod 《Queueing Systems》1998,30(3-4):341-363
We consider a single server queue with the interarrival times and the service times forming a regenerative sequence. This traffic class includes the standard models: iid, periodic, Markov modulated (e.g., BMAP model of Lucantoni [18]) and their superpositions. This class also includes the recently proposed traffic models in high speed networks, exhibiting long range dependence. Under minimal conditions we obtain the rates of convergence to stationary distributions, finiteness of stationary moments, various functional limit theorems and the continuity of stationary distributions and moments. We use the continuity results to obtain approximations for stationary distributions and moments of an MMPP/GI/1 queue where the modulating chain has a countable state space. We extend all our results to feed-forward networks where the external arrivals to each queue can be regenerative. In the end we show that the output process of a leaky bucket is regenerative if the input process is and hence our results extend to a queue with arrivals controlled by a leaky bucket. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
We consider an extension of the classical machine-repair model, where we assume that the machines, apart from receiving service from the repairman, also serve queues of products. The extended model can be viewed as a layered queueing network, where the first layer consists of the queues of products and the second layer is the ordinary machine-repair model. As the repair time of one machine may affect the time the other machine is not able to process products, the downtimes of the machines are correlated. This correlation leads to dependence between the queues of products in the first layer. Analysis of these queue length distributions is hard, as the exact dependence structure for the downtimes, or the queue lengths, is not known. Therefore, we obtain an approximation for the complete marginal queue length distribution of any queue in the first layer, by viewing such a queue as a single server queue with correlated server downtimes. Under an explicit assumption on the form of the downtime dependence, we obtain exact results for the queue length distribution for that single server queue. We use these exact results to approximate the machine-repair model. We do so by computing the downtime correlation for the latter model and by subsequently using this information to fine-tune the parameters we introduced to the single server queue. As a result, we immediately obtain an approximation for the queue length distributions of products in the machine-repair model, which we show to be highly accurate by extensive numerical experiments.  相似文献   

15.
Consider two servers of equal service capacity, one serving in a first-come first-served order (FCFS), and the other serving its queue in random order. Customers arrive as a Poisson process and each arriving customer observes the length of the two queues and then chooses to join the queue that minimizes its expected queueing time. Assuming exponentially distributed service times, we numerically compute a Nash equilibrium in this system, and investigate the question of which server attracts the greater share of customers. If customers who arrive to find both queues empty independently choose to join each queue with probability 0.5, then we show that the server with FCFS discipline obtains a slightly greater share of the market. However, if such customers always join the same queue (say of the server with FCFS discipline) then that server attracts the greater share of customers. This research was supported by the Israel Science Foundation grant No. 526/08.  相似文献   

16.
We consider a system ofN queues served by a single server in cyclic order. Each queue has its own distinct Poisson arrival stream and its own distinct general service-time distribution (asymmetric queues), and each queue has its own distinct distribution of switchover time (the time required for the server to travel from that queue to the next). We consider two versions of this classical polling model: In the first, which we refer to as the zero-switchover-times model, it is assumed that all switchover times are zero and the server stops traveling whenever the system becomes empty. In the second, which we refer to as the nonzero-switchover-times model, it is assumed that the sum of all switchover times in a cycle is nonzero and the server does not stop traveling when the system is empty. After providing a new analysis for the zero-switchover-times model, we obtain, for a host of service disciplines, transform results that completely characterize the relationship between the waiting times in these two, operationally-different, polling models. These results can be used to derive simple relations that express (all) waiting-time moments in the nonzero-switchover-times model in terms of those in the zero-switchover-times model. Our results, therefore, generalize corresponding results for the expected waiting times obtained recently by Fuhrmann [Queueing Systems 11 (1992) 109—120] and Cooper, Niu, and Srinivasan [to appear in Oper. Res.].Research supported in part by the National Science Foundation under grant DDM-9001751.  相似文献   

17.
In this paper we consider a single-server, cyclic polling system with switch-over times and Poisson arrivals. The service disciplines that are discussed, are exhaustive and gated service. The novel contribution of the present paper is that we consider the reneging of customers at polling instants. In more detail, whenever the server starts or ends a visit to a queue, some of the customers waiting in each queue leave the system before having received service. The probability that a certain customer leaves the queue, depends on the queue in which the customer is waiting, and on the location of the server. We show that this system can be analysed by introducing customer subtypes, depending on their arrival periods, and keeping track of the moment when they abandon the system. In order to determine waiting time distributions, we regard the system as a polling model with varying arrival rates, and apply a generalised version of the distributional form of Little??s law. The marginal queue length distribution can be found by conditioning on the state of the system (position of the server, and whether it is serving or switching).  相似文献   

18.
Consider a polling system of two queues served by a single server that visits the queues in cyclic order. The polling discipline in each queue is of exhaustive-type, and zero-switchover times are considered. We assume that the arrival times in each queue form a Poisson process and that the service times form sequences of independent and identically distributed random variables, except for the service distribution of the first customer who is served at each polling instant (the time in which the server moves from one queue to the other one). The sufficient and necessary conditions for the ergodicity of such polling system are established as well as the stationary distribution for the continuous-time process describing the state of the system. The proofs rely on the combination of three embedded processes that were previously used in the literature. An important result is that ρ=1 can imply ergodicity in one specific case, where ρ is the typical traffic intensity for polling systems, and ρ<1 is the classical non-saturation condition.  相似文献   

19.
We consider the following Type of problems. Calls arrive at a queue of capacity K (which is called the primary queue), and attempt to get served by a single server. If upon arrival, the queue is full and the server is busy, the new arriving call moves into an infinite capacity orbit, from which it makes new attempts to reach the primary queue, until it finds it non-full (or it finds the server idle). If the queue is not full upon arrival, then the call (customer) waits in line, and will be served according to the FIFO order. If λ is the arrival rate (average number per time unit) of calls and μ is one over the expected service time in the facility, it is well known that μ > λ is not always sufficient for stability. The aim of this paper is to provide general conditions under which it is a sufficient condition. In particular, (i) we derive conditions for Harris ergodicity and obtain bounds for the rate of convergence to the steady state and large deviations results, in the case that the inter-arrival times, retrial times and service times are independent i.i.d. sequences and the retrial times are exponentially distributed; (ii) we establish conditions for strong coupling convergence to a stationary regime when either service times are general stationary ergodic (no independence assumption), and inter-arrival and retrial times are i.i.d. exponentially distributed; or when inter-arrival times are general stationary ergodic, and service and retrial times are i.i.d. exponentially distributed; (iii) we obtain conditions for the existence of uniform exponential bounds of the queue length process under some rather broad conditions on the retrial process. We finally present conditions for boundedness in distribution for the case of nonpatient (or non persistent) customers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In this paper we consider a single server retrial queue where the server is subject to breakdowns and repairs. New customers arrive at the service station according to a Poisson process and demand i.i.d. service times. If the server is idle, the incoming customer starts getting served immediately. If the server is busy, the incoming customer conducts a retrial after an exponential amount of time. The retrial customers behave independently of each other. The server stays up for an exponential time and then fails. Repair times have a general distribution. The failure/repair behavior when the server is idle is different from when it is busy. Two different models are considered. In model I, the failed server cannot be occupied and the customer whose service is interrupted has to either leave the system or rejoin the retrial group. In model II, the customer whose service is interrupted by a failure stays at the server and restarts the service when repair is completed. Model II can be handled as a special case of model I. For model I, we derive the stability condition and study the limiting behavior of the system by using the tools of Markov regenerative processes.Visiting from Department of Applied Mathematics, Korea Advanced Institute of Science and Technology, Cheongryang, Seoul, Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号