首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IntroductionFluidinducedvibrationexistsinmanyengineeringfields.Thevibrationandstabilityofpipeconveyingfluidisatypicalexample.Manyscholarsathomeandabroadhavealwaysbeeninterestedinthissubjectandmadealotofstudiesofit.Particularlyduringrecentdecades,somere…  相似文献   

2.
Frequency lock-in phenomenon for oscillating airfoils in buffeting flows   总被引:3,自引:0,他引:3  
Navier-Stokes based computer simulations are conducted to determine the aerodynamic flow field response that is observed for a NACA0012 airfoil that undergoes prescribed harmonic oscillation in transonic buffeting flows, and also in pre-buffet flow conditions. Shock buffet is the term for the self-sustained shock oscillations that are observed for certain combinations of Mach number and steady mean flow angle of attack even in the absence of structural motion. The shock buffet frequencies are typically on the order of the elastic structural frequencies, and therefore may be a contributor to transonic aeroelastic response phenomena, including limit-cycle oscillations. Numerical simulations indicate that the pre-shock-buffet flow natural frequency increases with mean angle of attack, while the flow damping decreases and approaches zero at the onset of buffet. Airfoil harmonic heave motions are prescribed to study the interaction between the flow fields induced by the shock buffet and airfoil motion, respectively. At pre-shock-buffet conditions the flow response is predominantly at the airfoil motion frequency, with some smaller response at multiplies of this frequency. At shock buffet conditions, a key effect of prescribed airfoil motions on the buffeting flow is to create the possibility of a lock-in phenomenon, in which the shock buffet frequency is synchronized to the prescribed airfoil motion frequency for certain combinations of airfoil motion frequencies and amplitudes. Aerodynamic gain-phase models for the lock-in region, as well as for the pre-shock-buffet conditions are suggested, and also a possible relationship between the lock-in mechanism and limit-cycle oscillation is discussed.  相似文献   

3.
The frequency lock-in during the nonlinear vibration of a turbomachinery blade is modeled using a spring-mounted airfoil coupled with a van der Pol Oscillator (VDP) oscillator. The proposed reduced-order model uses the nonlinear VDP oscillator to represent the oscillatory nature of wake dynamics caused by the vortex shedding. The damping term in the VDP oscillator is assumed to be nonlinear. The coupled equations governing the pitch and plunge motion of an airfoil are used to approximate the vibration of a turbomachinery blade. Springs having cubic-order nonlinearity for their stiffnesses are used to mount the airfoil. The unsteady lift acting on the blade is modeled using a self-excited nonlinear wake oscillator. The model for wake dynamics takes into account the influence of blade inertia. The nonlinear coupled three degrees of freedom (dof) aeroelastic system is studied for instability resulting in the frequency lock-in phenomenon. The equations are transformed into non-dimensional form, and then the frequencies of the coupled system are plotted to demonstrate the frequency lock-in. Further, the method of multiple scales is used to derive modulation equations which represent the amplitude and phase of the oscillation. The results obtained using the method of multiple scales are compared with direct numerical solutions to verify the present modeling method. The steady-state amplitudes of the response are plotted against the detuning parameter, which represents the frequency response curve. Further, the sensitivity of non-dimensional parameters such as coupling coefficients, mass ratio, reduced velocity, static unbalance, structural damping coefficient and the ratio of uncoupled pitch and plunge natural frequencies on the frequency response is investigated. The study revealed that parameters such as mass ratio, reduced velocity, structural damping coefficient, and coupling coefficients have a stronger influence in suppressing the amplitude of vibration. Meanwhile, parameters such as the frequency ratio, static unbalance, reduced velocity, and mass ratio significantly affect the range of frequency in which the lock-in phenomenon happens. Further, linear perturbation analysis is done to understand the qualitative effect of the system parameters such as coupling coefficients, mass ratio, frequency ratio, and static unbalance on the range of lock-in.  相似文献   

4.
Kumar  Sandeep  Onkar  Amit Kumar  Maligappa  Manjuprasad 《Meccanica》2019,54(14):2207-2225
Meccanica - In this work, a stochastic finite element method based on first order perturbation approach is developed for the probabilistic flutter analysis of aircraft wing in frequency domain....  相似文献   

5.
Kumar  Sandeep  Onkar  Amit Kumar  Maligappa  Manjuprasad 《Meccanica》2021,56(5):1263-1263
Meccanica - This article was published with a wrong author affiliation. Please find in this document the correct affiliations that should be regarded as final by the reader.  相似文献   

6.
A coupled-mode model is developed for treating the wave–current–seabed interaction problem, with application to wave scattering by non-homogeneous, sheared current with linear vertical velocity profile, over general bottom topography. The wave potential is represented by a series of local vertical modes containing the propagating and evanescent modes, plus additional terms accounting for the satisfaction of the boundary conditions. Using the above representation, in conjunction with a variational principle, a coupled system of differential equations on the horizontal plane is derived, with respect to the unknown modal amplitudes. In the case of small-amplitude waves, a linearized version of the above coupled-mode system is obtained, extending previous analysis by Belibassakis et al. (2011) to the propagation of water waves over variable bathymetry regions in the presence of vertically sheared currents. Keeping only the propagating mode in the vertical expansion of the wave potential, the present system reduces to a one-equation model, that is shown to extend known mild-slope mild vertical shear equation concerning wave–current interaction over slowly varying topography. After additional simplifications, the latter model is shown to be compatible with the extended mild-slope mild-shear equation by Touboul et al. (2016). Results are presented for various representative test cases demonstrating the usefulness of the present coupled mode system and the importance of various terms in the modal expansion, and compared against experimental data collected in wave flume validating the present method. The analytical structure of the present system facilitates extensions to model non-linear effects and applications concerning wave scattering by inhomogeneous currents in coastal regions with general 3D bottom topography.  相似文献   

7.
When wind blows on trees, leaves flutter. The induced motion is known to affect biological functions at the tree scale such as photosynthesis. This paper presents an experimental and theoretical study of the aeroelastic instability leading to leaf flutter. Experiments in a wind tunnel are conducted on ficus leaves (Ficus Benjamina) and artificial leaves. We show that stability and flutter domains are separated by a well-defined limit depending on leaf orientation and wind speed. This limit is also theoretically predicted through a stability analysis of the leaf motion.  相似文献   

8.
A computational method for flutter prediction of turbomachinery cascades is presented. The flow through multiple blade passages is calculated using a time-domain approach with coupled aerodynamic and structural models. The unsteady Euler/Navier-Stokes equations are solved in quasi-three-dimensions using a second-order implicit scheme with dual time-stepping and a multigrid method. A structural model for the blades with bending and torsion degrees of freedom is integrated in time together with the flow field. Information between structural and aerodynamic models is exchanged until convergence in each real-time step. Computational results for a cascade are presented and compared with those obtained by the conventional energy method and with experimental and numerical data by other authors. Significant differences are found between the coupled and uncoupled methods at low mass ratios. A transonic test case with strong nonlinear phenomena is investigated with the fluid-structure coupled method. Results for inviscid flow are compared with results of Navier-Stokes computations.  相似文献   

9.
This paper illustrates the use of a pair of piezoelectric layers in increasing the flutter and buckling capacity of a column subjected to a follower force. The column is fixed at one end while the other one is free to rotate but constrained transversely by a spring. The mathematical formulation is presented and solved numerically. The effect of the spring stiffness on the capacity and type of instability of the column is first illustrated numerically for the case without any piezoelectric actuators. A transition value for the stiffness can be identified, below which the column fails by flutter and above which the column buckles. Next, an external voltage is applied on the piezoelectric layers bonded on the surfaces of the column, which induces locally a pair of tensile follower force. This has the effect of increasing the capacity of the column as the voltage increases while the transition stiffness remains virtually unchanged for a given size and location of piezoelectric actuators. It is also shown that the capacity of the column increases with longer layers for a fixed voltage. However, the location of the layers along the column determines the transition stiffness and hence has an effect on the type of failure for a fixed spring constant. Positioning towards the fixed end increases the flutter capacity whereas positioning away will result in an increase in buckling capacity.  相似文献   

10.
Flutter and divergence instabilities have been advocated to be possible in elastic structures with Coulomb friction, but no direct experimental evidence has ever been provided. Moreover, the same types of instability can be induced by tangential follower forces, but these are commonly thought to be of extremely difficult, if not impossible, practical realization. Therefore, a clear experimental basis for flutter and divergence induced by friction or follower-loading is still lacking. This is provided for the first time in the present article, showing how a follower force of tangential type can be realized via Coulomb friction and how this, in full agreement with the theory, can induce a blowing-up vibrational motion of increasing amplitude (flutter) or an exponentially growing motion (divergence). In addition, our results show the limits of a treatment based on the linearized equations, so that nonlinearities yield the initial blowing-up vibration of flutter to reach eventually a steady state. The presented results give full evidence to potential problems in the design of mechanical systems subject to friction, open a new perspective in the realization of follower-loading systems and of innovative structures exhibiting ‘unusual’ dynamical behaviors.  相似文献   

11.
We present an experimental study which shows that the mechanism known as transient growth of energy, can cause flutter instability of a nonlinearly flexible airfoil at a wind velocity below the linear critical flutter velocity. A flap mounted upstream a flexible airfoil in a wind tunnel generates a single gust which triggers the plunge and pitch oscillations. This gust is characterized using two-component hot-wire anemometry. For the first time experimental evidence is provided to confirm the theoretical scenario of a by-pass transition to flutter by transient growth. From an engineering point of view, transient growth might explain also the premature structural fatigue encountered in structures subject to wind.  相似文献   

12.
The aeroelastic response of a NACA 0012 airfoil in the flow regimes prior to flutter is investigated in a wind tunnel. We observe intermittent bursts of periodic oscillations in the pitch and plunge response, that appear in an irregular manner from a background of relatively lower amplitude aperiodic fluctuations. As the flow speed is increased, the intermittent bursts last longer in time until eventually transitioning to a fully developed periodic response, indicating the onset of flutter. The repeating patterns in the measured response are visualized using recurrence plots. We show that statistics of the recurrence states extracted from these plots can be used to develop model-free precursors that forewarn an impending transition to flutter, well before its onset.  相似文献   

13.
In this paper, we give a detailed study of rich dynamics in two-parameter families of two-dimensional generalized delayed discrete Cournot duopoly models. Multistability, such as the coexistence of period-2/quasiperiodic (limit-cycle), chaotic/regular motions or synchronized/asynchronized solutions are discussed. Complexity caused by delay, including the change of local stability regions and the occurrence of higher-codimension bifurcations, is to be discovered.  相似文献   

14.
Peng  Mingshu  Yi  Xiaoyu  Cheng  Ranran 《Nonlinear dynamics》2023,111(10):9201-9213

It is an awfully difficult task to design an efficient numerical method for bifurcation diagrams, the graphs of Lyapunov exponents, or the topological entropy about discrete dynamical systems by linear/nonlinear diffusion with the Direchlet/Neumann- boundary conditions. Until now there are less works concerned with such a problem. In this paper, we propose a scheme about bifurcating analysis in a series of discrete-time dynamical systems with linear/nonlinear diffusion terms under the periodic boundary conditions. The complexity of dynamical behaviors caused by the diffusion term are to be determined. Bifurcation diagrams are shown by numerical simulation and chaotic behavior (chaotic Turing patterns) is demonstrated by computing the largest Lyapunov exponent. Our theoretical model can give an interesting case study about the phenomenon: the individuals exhibit a very simple dynamics but the groups with linear/nonlinear coupling can own a complex dynamics including fluctuation, periodicity and even chaotic behavior. We find that diffusion can trigger chaotic behavior in the present system and there exist multiple Turing patterns. It is interesting as regular or chaotic patterns can be reported in this study. Chaotic orbits emerge when exploring further in the diffusion coefficient space, and such a behavior is entirely absent in the corresponding continuous time-space system. The method proposed in the present paper is innovative and the conclusion is novel.

  相似文献   

15.
16.
V. N. Chelomey 《Meccanica》1985,20(4):314-316
Summary In the article new paradoxical phenomena in mechanics and physics caused by vibrations are stated. It is indicated that: a) a heavy ball in vibrating fluid can emerge and a light body can sink; b) an unfixed washer on a vertical vibrating bar with a lower hinge support does not fall while the bar stands almost vertically; c) static stability of elastic systems can be increased with the help of vertical vibrations.
Sommario Nella nota si presentano alcuni nuovi fenomeni paradossali in meccanica e in fisica causati da vibrazioni. Si mostra che: a) in un fluido che vibra una pallina pesante può galleggiare ed une leggera affondare; b) una rondella che può scorrere lungo un albero verticale che vibra e che è vincolato alla base con una cerniera non cade verso il basso mentre l'albero si mantiene quasi verticle; c) la stabilità statica di sistemi elastici può essere aumentata per mezzo di vibrazioni verticali.
  相似文献   

17.
The transient thermal-stress concentrations produced by cracks, sharp and round notches, and fillets, in plates were measured photoelastically and compared to values computed numerically by finite element and finite-difference techniques. The stresses near the tips of the cracks and the notches were singular and observed to agree with isothermal linear elastic fracture mechanics. Stresses near the root of the fillets were always less than the theoretical maximum, αE(T?T initial ), but often greater than the maximum stresses measured in a straight-edged plate subjected to similar thermal conditions.  相似文献   

18.
The problem of nonlinear aerothermoelasticity of a two-dimension thin plate in supersonic airflow is examined. The strain-displacement relation of the von Karman's large deflection theory is employed to describe the geometric non-linearity and the aerodynamic piston theory is employed to account for the effects of the aerodynamic force. A new method, the differential quadrature method (DQM), is used to obtain the discrete form of the motion equations. Then the Runge-Kutta numerical method is applied to solve the nonlinear equations and the nonlinear response of the plate is obtained numerically. The results indicate that due to the aerodynamic heating, the plate stability is degenerated, and in a specific region of system parameters the chaos motion occurs, and the route to chaos motion is via doubling-period bifurcations.  相似文献   

19.
20.
The paper describes and evaluates an easy experimental method for subjecting the edges of photoelastic plate models to severe and repeatable thermal shock. It presents the development, with time, of the photoelasticfringe pattern at the edge of a plate and shows that this method simulates thermal-shock conditions in metallic materials of an intensity that is exceeded only under the most severe practical conditions. The resultant edge stresses are shown to increase to maximum values and then decrease with time as conditions shift from essentially plane strain to plane stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号