共查询到17条相似文献,搜索用时 58 毫秒
1.
分子印迹聚合物微球的制备及应用研究进展 总被引:6,自引:1,他引:6
球形分子印迹聚合物具有制备简单、使用方便;分子识别效率高且便于功能设计等优点,近年来成为分子印迹技术领域研究的热点之一。对球形分子印迹聚合物微球的制备及其应用研究进展作了较为详细的介绍。 相似文献
2.
3.
以表面修饰双键的Fe3O4@SiO2纳米颗粒为基体,以萘夫西林(nafcillin)为模板,甲基丙烯酸(MAA)为单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,采用三步升温聚合法合成了核壳结构的萘夫西林磁性分子印迹聚合物。采用傅里叶变换红外光谱仪(FT-IR)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和振动样品磁强计(VSM)对制备的印迹聚合物微球进行了表征,得到的磁性印迹聚合物微球的粒径在320 nm左右,大小均匀,分散性较好,可以在外加磁场下与溶剂实现快速分离。对磁性印迹和非印迹聚合物进行了吸附性能研究,结果表明该印迹聚合物微球对模板分子具有很高的吸附容量(50.7 mg/g),特异性识别性能良好(印迹因子为2.46),有望应用于实际样品中萘夫西林残留量的富集分析。 相似文献
4.
分子印迹聚合物是具有与模板分子形状、大小及官能团完全匹配的特异识别位点的高分子聚合物,能选择性识别、有效富集目标分析物(模板分子)并去除干扰物,已广泛应用于样品前处理、化学/生物传感、药物输送等领域.然而,在合成过程中,仍存在模板分子洗脱困难、有效识别位点少、结合容量低、传质速率慢等问题.核-壳型分子印迹聚合物即在核层颗粒表面进行分子印迹,即表面印迹,印迹位点仅存在于壳层结构中,利于模板分子洗脱及扩散,能够增加有效识别位点并提高印迹容量.依据核层材料的不同,本文详细介绍了以磁性材料及非磁性材料为核的核-壳型分子印迹聚合物的合成与应用,探讨了中空核-壳分子印迹聚合物的制备与发展,并对核-壳印迹聚合物的发展前景进行了展望. 相似文献
5.
6.
7.
以表面修饰乙烯基团的SiO2微球为基体,白藜芦醇为模板分子,丙烯酰胺(AA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,采用表面印迹技术制备核-壳型白藜芦醇印迹微球。采用红外光谱(IR)、扫描电子显微镜(SEM)对该分子印迹微球进行表征,结果表明,SiO2表面成功接枝一层厚度为200nm的印迹聚合物,该印迹微球颗粒分散均匀。采用高效液相色谱技术对印迹微球的吸附性进行研究表明,此印迹微球具有良好的识别性能,利用Scatchard模型分析得出印迹微球的最大吸附量分别为Qmax1=9.087mg/g和Qmax2=13.80mg/g。此印迹微球成功用于分离虎杖提取液中白藜芦醇。 相似文献
8.
沉淀聚合法制备三聚氰胺分子印迹聚合物微球 总被引:7,自引:0,他引:7
以三聚氰胺为模板分子,以甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,在乙腈-乙二醇(20∶1,V/V)混合溶剂中沉淀聚合制备了分子印迹聚合物微球.利用1H-NMR和紫外光谱方法研究了模板与功能单体相互作用情况.结果表明,三聚氰胺与甲基丙烯酸(MAA)分子通过协同氢键作用形成1∶2型氢键配合物.利用扫描电镜和红外光谱对聚合物微球的结构进行了表征.结果表明,印迹聚合物近似圆球形,粒径约为400~500 nm,且大于非印迹聚合物微球,表面存在大量的结合位点.通过静态平衡吸附实验研究了聚合物微球对模板分子的结合能力,印迹聚合物微球在4 h后逐渐达到吸附平衡,Scatchard分析表明,印迹聚合物微球主要存在两类不同的结合位点,最大表观结合量(Qmax)和平衡离解常数(Kd)分别为Qmax1=22.97μmol/g,Kd1=0.14×10-3 mol/L;Qmax2=157.65μmol/g,Kd2=2.55×10-3 mol/L,计算得出表观印迹效率和有效印迹效率分别为68%和58%.此方法合成的印迹聚合物微球对三聚氰胺有较好的结合性能,可应用于三聚氰胺的分离检测. 相似文献
9.
10.
采用稳定性好且亲水性强的苯胺(AN)为功能单体,过硫酸铵(APS)为引发剂,雌二醇(E2)为模板分子,羧基磁球(Fe3O4-COOH)为载体,通过固定模板印迹策略制备新型核-壳式雌二醇磁性分子印迹聚合物(MIPs-E2),用于选择性吸附雌二醇。采用透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD)以及振动样品磁强计(VSM)对材料进行表征。结果表明,MIPs-E2粒径均一、晶型结构稳定,并且具有良好的磁性能。动力学吸附、等温吸附、选择性吸附和重复利用性实验结果表明,MIPs-E2具有大的吸附量(21.34 mg/g)、高的选择性(IF=2.65,SC>1.89)、快的传质速率(30 min)以及好的可重复利用性(6次循环使用后吸附效率为93.4%)。本研究为检测环境水样品中雌二醇的含量提供了新方法。 相似文献
11.
12.
以偶氮二异丁腈为引发剂,2~3μm的聚苯乙烯微球为种球,克百威为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,采用单步溶胀法制备粒径均一的克百威分子印迹聚合物微球(MIPMs)。通过扫描电镜(SEM)、吸附平衡实验和竞争吸附实验分析了克百威MIPMs的形貌及其对克百威的结合特性及吸附选择性,并比较了克百威分子印迹固相萃取柱(MISPE)与C18固相萃取柱(C18SPE)富集水中克百威的效果。结果表明:合成的MIPMs粒径约10μm,表面呈蜂窝状;在90min内可达到饱和吸附,最大吸附量为25.94mg/g;在克百威、灭多威和三羟基克百威共存的条件下,克百威MIPMs可实现对克百威的专一性吸附;与C18SPE相比,克百威MISPE重复使用6次后加标回收率仍在85%以上,可用于水体中痕量克百威的检测。 相似文献
13.
14.
罗丹明B分子印迹聚合物微球的合成及其在固相萃取中的应用 总被引:2,自引:3,他引:2
以罗丹明B为模板分子,丙烯酰胺为功能单体,乙二醇二甲基丙烯酸酯为交联剂,采用沉淀聚合法制备了罗丹明B分子印迹聚合物(MIP)微球,并用扫描电子显微镜表征。 采用紫外分光光度法测定了印迹分子罗丹明B与功能单体丙烯酰胺二者之间的结合常数(K=5.303×103 (mol/L)-1)和化学计量比(n=1)。 考察了沉淀剂的种类和用量对聚合物微球的影响。 将分子印迹聚合物微球应用于固相萃取材料自制固相萃取柱,从加标罗丹明B的红椒粉中萃取罗丹明B。 本文优化了固相萃取条件,高效液相色谱检测表明,在一定的萃取条件下,分子印迹聚合物对加标量为0.479 mg/kg的辣椒中罗丹明B的萃取加标回收率可达91.7%~103.5%。 相似文献
15.
Microspheres Sensor Based on Molecularly Imprinted Polymer Synthesized by Precipitation Polymerization 总被引:2,自引:0,他引:2
IntroductionSincethepiezoelectricbulkacousticwave (BAW)sen sorswereappliedinliquidphaseinthe 1980s ,manypapershavebeenreported .1,2 However,theapplicationofBAWsen sorsbasedonmasseffectislimitedbecauseoflackofthespecialselectivitytotheanalyte.Variousmethodshavebeenproposedtosolvethisproblem ,especiallytheapplicationofthebiomaterials .3Unfortunately ,theresultwasnotsogoodasexpected,duetotheinstinctdisadvantageofthebiomateri als ,e.g .,poorstability ,shortlifespan ,althoughpossess inghighselec… 相似文献
16.
以槲皮素(Qu)为模板分子、N-乙烯基吡咯烷酮(NVP)和丙烯酸(AA)为功能单体、N,N′-亚甲基双丙烯酰胺(MBA)为交联剂、H2O2-Vc为引发剂、KH570修饰的Fe3O4纳米颗粒为磁性载体,借助表面分子印迹技术制备了能够对Qu进行特异性识别的槲皮素磁性分子印迹聚合物(Qu-MMIPs)。利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FT-IR)、振动样品磁强计(VSM)和紫外-可见分光光度计(UV-Vis)对样品进行了结构和性能表征。结果表明:Fe3O4磁性载体表面已成功包覆了分子印迹聚合物。与化学组成相同的磁性非印迹聚合物(Qu-MNIPs)相比,Qu-MMIPs对Qu有较高的吸附选择性。静态吸附平衡实验和Scatchard分析结果表明,Qu-MMIPs中存在两类不同的结合位点,平衡解离常数分别为1.646×10-6 mol/L和6.387×10-6 mol/L,最大吸附量分别为23.041mg/g和29.923mg/g。 相似文献
17.
采用表面分子印迹技术,以谷胱甘肽(GSH)为模板分子,N-乙烯基吡咯烷酮(NVP)和丙烯酰胺(AM)为功能单体,N,N’-亚甲基双丙烯酰胺(MBA)为交联剂,γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)改性的Fe3O4纳米颗粒为磁性载体,制备了对GSH有特异识别性的磁性分子印迹聚合物(GSH-MMIPs). 利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、红外光谱(FT-IR)和振动样品磁强计(VSM)对聚合物进行了表征,结果表明磁性载体表面成功地包覆了分子印迹聚合物薄层. 静态吸附平衡实验和Scatchard分析结果表明,GSH-MMIPs中存在两类不同的结合位点,平衡解离常数分别为8.786×10-4 mol/L和5.424×10-3 mol/L,最大吸附量分别为49.195 mg/g和155.003 mg/g. 与化学组成相同的磁性非印迹聚合物(GSH-MNIPs)相比,GSH-MMIPs对谷胱甘肽有较高的选择吸附性能. 相似文献