共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
合成了一种同时含有单偶氮苯基团和双β-环糊精单元的AB2型两亲分子(Azo-CD2),并通过核磁共振谱和基质辅助激光解吸电离飞行时间质谱对其结构进行了表征和确认.动态光散射和透射电子显微镜测试结果表明,在水溶液中,Azo-CD2在无任何外界刺激的条件下可自发地形成球形自组装体,而当施加超声振动后逐渐转变为超分子超支化聚合物自组装体;该自组装体被进一步施加紫外光辐射后可解离成尺寸较小的支化聚集体,而其在可见光辐射下又可以可逆地变回原来的超支化自组装形貌.利用紫外分光光度计测试Azo-CD2自组装体对抗癌药物阿霉素(DOX)的释放曲线发现,通过超声和光的双重调控作用可实现Azo-CD2自组装体对DOX的程序化控制释放.利用一维1H-NMR谱和二维NOESY谱进一步阐明了Azo-CD2自组装体形貌转变过程与其程序化控释结果的相关关系. 相似文献
5.
6.
7.
8.
9.
10.
环糊精是一类由6~8个D-型葡萄糖连接而成的环聚多糖分子,目前已广泛应用于化学和生物学的许多领域.综述了一些生物活性的环糊精超分子组装体,如环糊精假聚轮烷、环糊精/金纳米粒子组装体、环糊精/富勒烯组装体、环糊精/碳纳米管组装体等的构筑及其与核酸的相互作用,如对核酸的切割、凝聚、传递作用和对核酸酶的抑制作用等方面的研究进展. 相似文献
11.
利用光敏感性环糊精衍生物与温度敏感性聚合物主客体间的包结络合作用制备了具有光/温度双敏感性的环糊精超分子聚集体. 首先制备了主体分子光敏感性4-羟基肉桂酸-β-环糊精(4HCA-CD); 再以末端带金刚烷基团(AD)的三硫酯作为链转移剂, 用可逆加成-断裂链转移自由基聚合(RAFT)法制备温度敏感性双臂聚合物AD-PNIPAM-AD; 用傅里叶变换红外光谱(FT-IR)、核磁共振氢谱(1H NMR)证明了化合物的结构. 利用β-CD的疏水空腔和AD之间的络合性能, 制备了4HCA-CD/AD-PNIPAM-AD双敏感性超分子复合物, 通过二维核磁(2D NMR)对其包结性能进行了探究, 结果证实金刚烷包结于环糊精的空腔中. 所得4HCA-CD/AD-PNIPAM-AD复合物具有光敏感性, 用紫外光照射后, 复合物的分子量增大近一倍. 而且, 4HCA-CD/AD-PNIPAM-AD复合物可以自组装形成超分子聚集体, 其粒径随温度的升降发生可逆的减小或增大. 相似文献
12.
偶氮类化合物是一类具有合成简单,异构化速率和转化效率高,耐光漂白的反式-顺式(E/Z)光异构化化合物。由于其光异构特性及其可以与大环主体形成稳定包合物,偶氮类化合物在许多领域展现出巨大的应用潜力。在本篇综述中,我们介绍了近年来偶氮功能基修饰的单环糊精、偶氮苯桥联双环糊精、冠醚衍生物以及偶氮类芳香大环化合物等作为主体,或偶氮苯及其衍生物为客体通过主客体相互作用构筑的光刺激响应的超分子组装体系在拓扑形貌调控、药物传递、智能材料等方面的设计原理、组装机理、应用和发展趋势。同时,我们也讨论了此类超分子组装体发展所面临的机遇和挑战,并希望可以进一步促进智能超分子组装体系的发展。 相似文献
13.
Introducing Chirality into Nonionic Dendritic Amphiphiles and Studying Their Supramolecular Assembly
Dr. Sumit Kumar Dr. Kai Ludwig Dr. Boris Schade Dr. Hans von Berlepsch Dr. Ilona Papp Dr. Rahul Tyagi Monika Gulia Prof. Dr. Rainer Haag Priv.‐Doz. Dr. Christoph Böttcher 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(16):5629-5636
Chiral head groups have been introduced into water‐soluble hydroxyl‐terminated nonionic amphiphiles and the impact of the head group stereochemistry on the supramolecular ultrastructures has been studied. Enantiomeric isomers were compared with the achiral meso form and the racemic mixture by means of cryogenic transmission electron microscopy and circular dichroism spectroscopy. Structurally, all amphiphiles are composed of the first‐generation hydrophilic polyglycerol head group coupled to a single hydrophobic hexadecyl chain through an amide linkage and diaromatic spacer. The enantiomers aggregate to form twisted ribbons with uniform handedness, whereas the meso stereoisomer and racemic mixture produce elongated assemblies, namely, tubules and platelets, but without a chiral ultrastructure. Simulations on the molecular packing geometries of the stereoisomers indicate different preferential assembly routes that explain the individual supramolecular aggregation behavior. 相似文献
14.
Daichi Sawada Prof. Dr. Kouichi Asakura Dr. Taisuke Banno 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(55):13840-13845
There have been several attempts to construct supramolecular chemical systems that mimic the phase transitions in living systems. However, most of these phase transitions are one-to-one and induced by one stimulus or chemical; there have been few reports on the pathway-dependent phase transition of supramolecular self-assemblies in multi-step. To induce multistep phase transitions, molecular crystals were prepared that contained a cationic amphiphile bearing azobenzene and disulfide groups. A reducing agent caused the crystals to become vesicles, and adjacent, non-touching vesicles fused under UV and subsequent visible light. Adding a reducing agent to the worm-like aggregates that were generated after UV irradiation of the original crystals resulted in the growth of sheet-like aggregates. 1H NMR and fluorescence anisotropy measurements showed that a series of phase transitions was induced by changes in the phase structures from molecular conversions of the reactive amphiphiles. The multiple pathway-dependent phase transitions of supramolecular self-assemblies can provide a methodology for developing new stimuli-responsive materials that exhibit the desirable properties under specific circumstances from a systems chemistry viewpoint. 相似文献
15.
Hong Wang Wenjuan Chen Yuejun Zhu Hao Yan Jian Zhang Chengzhong Wang 《Journal of Dispersion Science and Technology》2016,37(9):1341-1348
In this paper, we report the synthesis and characterization of a new stimuli-responsive diblock polymer, i.e., methoxy poly (ethylene glycol)-block-Poly(N-isopropylacrylamide) (mPEG-b-PNIPAM), which belongs to the family of supramolecular amphiphiles. For this purpose, β-cyclodextrin (β-CD)-functionalized methoxy poly (ethylene glycol) (mPEG-CD) and adamantine (AD)-modified poly(N-isopropylacrylamide) (PNIPAM-AD) were synthesized. The diblock polymer mPEG-b-PNIPAM was then obtained by host–guest inclusion between mPEG-CD and PNIPAM-AD. The structure and molecular weight of the mPEG-b-PNIPAM was confirmed by 1HNMR and GPC, respectively. Above the lower critical solution temperature (LCST), mPEG-b-PNIPAM can self-assemble into nano-structures in aqueous solutions with PNIPAM block as the core and mPEG block as the corona. The aggregation behavior of mPEG-b-PNIPAM were revealed by UV-vis, DLS measurements, and TEM observations. The mPEG-b-PNIPAM was further utilized to construct Dox@mPEG-b-PNIPAM micelles at 37°C in phosphate-buffered saline (PBS). No detectable amount of Dox was released from the micelles at 37°C. When cooling to 27°C or adding a competitive reagent, however, release of Dox from the micelles was observed. 相似文献
16.
Peiyi Wang Dr. Jun Hu Prof. Song Yang Prof. Baoan Song Prof. Qian Wang 《化学:亚洲杂志》2014,9(10):2880-2884
The mixing of a polyacid cross‐linker with a pyridinium‐functionalized anthracene amphiphile afforded a supramolecular hydrogel through a self‐assembly process that was primarily driven by π‐stacking and electrostatic interactions. 相似文献
17.
18.
Enzo Bomal Dr. Vincent Croué Dr. Reuben Yeo Dr. Rosario Scopelliti Prof. Holger Frauenrath 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(41):8907-8915
Oligoynes with two or more conjugated carbon–carbon triple bonds are useful precursors for carbon-rich nanomaterials. However, their range of applications has so far been severely limited by the challenging syntheses, particularly in the case of oligoynes with functional groups. Here, we report a universal synthetic approach towards both symmetric and unsymmetric, functionalized hexaynes through the use of a modified Eglinton–Galbraith coupling and a sacrificial building block. We demonstrate the versatility of this approach by preparing hexaynes functionalized with phosphonic acid, carboxylic acid, ammonium, or thiol head groups, which serve as neutral, cationogenic, or anionogenic interfacially active groups. We show that these hexaynes are carbon-rich amphiphiles or bolaamphiphiles that self-assemble at liquid–liquid interfaces, on solid surfaces, as well as in aqueous media. 相似文献
19.
Dr. Sisir Debnath Dr. Sangita Roy Dr. Yousef M. Abul-Haija Dr. Pim W. J. M. Frederix Dr. Susana M. Ramalhete Dr. Andrew R. Hirst Dr. Nadeem Javid Prof. Neil T. Hunt Dr. Sharon M. Kelly Dr. Jesús Angulo Prof. Yaroslav Z. Khimyak Prof. Rein V. Ulijn 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(33):7881-7887
The possibility of using differential pre-heating prior to supramolecular gelation to control the balance between hydrogen-bonding and aromatic stacking interactions in supramolecular gels and obtain consequent systematic regulation of structure and properties is demonstrated. Using a model aromatic peptide amphiphile, Fmoc-tyrosyl-leucine (Fmoc-YL) and a combination of fluorescence, infrared, circular dichroism and NMR spectroscopy, it is shown that the balance of these interactions can be adjusted by temporary exposure to elevated temperatures in the range 313–365 K, followed by supramolecular locking in the gel state by cooling to room temperature. Distinct regimes can be identified regarding the balance between H-bonding and aromatic stacking interactions, with a transition point at 333 K. Consequently, gels can be obtained with customizable properties, including supramolecular chirality and gel stiffness. The differential supramolecular structures also result in changes in proteolytic stability, highlighting the possibility of obtaining a range of supramolecular architectures from a single molecular structure by simply controlling the pre-assembly temperature. 相似文献