首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A tri‐tree grid generation procedure is developed together with a finite volume method on the unstructured grid for solving the Navier–Stokes equations. A hierarchic numbering system for the data structure is used. The grid is adapted by adding and removing cell elements dependent on the vorticity magnitude. A special treatment is developed to ensure good quality triangular elements around the cylinder boundary. The adopted finite volume method is based on the cell‐centred scheme. The pressure–velocity coupling is treated using the SIMPLE algorithm. A modified QUICK scheme for unstructured grids is derived. The developed method is used to simulate the flow past a single and multiple cylinders at low Reynolds number. The obtained results are in good agreement with the published data. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
A time-implicit numerical method for solving unsteady incompressible viscous flow problems is introduced. The method is based on introducing intermediate compressibility into a projection scheme to obtain a Helmholtz equation for a pressure-type variable. The intermediate compressibility increases the diagonal dominance of the discretized pressure equation so that the Helmholtz pressure equation is relatively easy to solve numerically. The Helmholtz pressure equation provides an iterative method for satisfying the continuity equation for time-implicit Navier–Stokes algorithms. An iterative scheme is used to simultaneously satisfy, within a given tolerance, the velocity divergence-free condition and momentum equations at each time step. Collocated primitive variables on a non-staggered finite difference mesh are used. The method is applied to an unsteady Taylor problem and unsteady laminar flow past a circular cylinder.  相似文献   

4.
The purpose of this work is to introduce and validate a new staggered control volume method for the simulation of 2D/axisymmetric incompressible flows. The present study introduces a numerical procedure for solving the Navier–Stokes equations using the primitive variable formulation. The proposed method is an extension of the staggered grid methodology to unstructured triangular meshes for a control volume approach which features ease of handling of irregularly shaped domains. Two alternative elements are studied: transported scalars are stored either at the sides of an element or at its vertices, while the pressure is always stored at the centre of an element. Two interpolation functions were investigated for the integration of the momentum equations: a skewed mass-weighted upwind function and a flow-oriented exponential shape function. The momentum equations are solved over the covolume of a side or of a vertex and the pressure–velocity coupling makes use of a localized linear reconstruction of the discontinuous pressure field surrounding an element in order to obtain the pressure gradient terms. The pressure equation is obtained through a discretization of the continuity equation which uses the triangular element itself as the control volume. The method is applied to the simulation of the following test cases: backward-facing step flow, flow over a two-dimensional obstacle and flow in a pipe with sudden contraction of cross-sectional area. All numerical investigations are compared with experimental data from the literature. A grid convergence and error analysis study is also carried out for flow in a driven cavity. Results compared favourably with experimental data and so the new control volume scheme is deemed well suited for the prediction of incompressible flows in complex geometries. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
基于非结构化同位网格的SIMPLE算法   总被引:4,自引:1,他引:4  
通过基于非结构化网格的有限体积法对二维稳态Navier—Stokes方程进行了数值求解。其中对流项采用延迟修正的二阶格式进行离散;扩散项的离散采用二阶中心差分格式;对于压力-速度耦合利用SIMPLE算法进行处理;计算节点的布置采用同位网格技术,界面流速通过动量插值确定。本文对方腔驱动流、倾斜腔驱动流和圆柱外部绕流问题进行了计算,讨论了非结构化同位网格有限体积法在实现SIMPLE算法时,迭代次数与欠松弛系数的关系、不同网格情况的收敛性、同结构化网格的对比以及流场尾迹结构。通过和以往结果比较可知,本文的方法是准确和可信的。  相似文献   

6.
The paper presents a finite‐volume calculation procedure using a second‐moment turbulence closure. The proposed method is based on a collocated variable arrangement and especially adopted for unstructured grids consisting of ‘polyhedral’ calculation volumes. An inclusion of 23k in the pressure is analysed and the impact of such an approach on the employment of the constant static pressure boundary is addressed. It is shown that this approach allows a removal of a standard but cumbersome velocity–pressure –Reynolds stress coupling procedure known as an extension of Rhie‐Chow method (AIAA J. 1983; 21 : 1525–1532) for the Reynolds stresses. A novel wall treatment for the Reynolds‐stress equations and ‘polyhedral’ calculation volumes is presented. Important issues related to treatments of diffusion terms in momentum and Reynolds‐stress equations are also discussed and a new approach is proposed. Special interpolation practices implemented in a deferred‐correction fashion and related to all equations, are explained in detail. Computational results are compared with available experimental data for four very different applications: the flow in a two‐dimensional 180o turned U‐bend, the vortex shedding flow around a square cylinder, the flow around Ahmed Body and in‐cylinder engine flow. Additionally, the performance of the methodology is assessed by applying it to different computational grids. For all test cases, predictions with the second‐moment closure are compared to those of the k–εmodel. The second‐moment turbulence closure always achieves closer agreement with the measurements. A moderate increase in computing time is required for the calculations with the second‐moment closure. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Orbital flow past a cylinder is relevant to offshore structures. The numerical scheme presented here is based on a finite-difference solution of the Navier–Stokes equations. Alternating-directional-implicit (ADI) and successive-over-relaxation (SOR) techniques are used to solve the vorticity-transport and stream-function equations. Theoretical simulations to low Reynolds number flows (up to 1000) are discussed for cases involving uniform flow past stationary and rotating cylinders and orbital flow past a cylinder. The separation points for cylinders that are rotating or immersed in an orbital flow are deduced from velocity profiles through the boundary layer using a hybrid mesh scheme. During the initial development of orbital flow surface vorticity on the impulsively started cylinder dominates the flow. A vortex then detaches from behind the cylinder and establishes the flow pattern of the orbit. After some time a collection of vortices circles the orbit and distorts its shape a great deal. These vortices gradually spiral outward as others detach from the cylinder and join the orbital path.  相似文献   

8.
A semi‐implicit scheme is presented for large eddy simulation of turbulent reactive flow and combustion in reciprocating piston engines. First, the governing equations in a deforming coordinate system are formulated to accommodate the moving piston. The numerical scheme is made up of a fourth‐order central difference for the diffusion terms in the transport equations and a fifth‐order weighted essentially nonoscillatory (WENO) scheme for the convective terms. A second‐ order Adams–Bashforth scheme is used for time integration. For higher density ratios, it is combined with a predictor–corrector scheme. The numerical scheme is explicit for time integration of the transport equations, except for the continuity equation which is used together with the momentum equation to determine the pressure field and velocity field by using a Poisson equation for the pressure correction field. The scheme is aimed at the simulation of low Mach number flows typically found in piston engines. An efficient multigrid method that can handle high grid aspect ratio is presented for solving the pressure correction equation. The numerical scheme is evaluated on two test engines, a laboratory four‐stroke engine with rectangular‐shaped engine geometry where detailed velocity measurements are available, and a modified truck engine with practical cylinder geometry where lean ethanol/air mixture is combusted under a homogeneous charge compression ignition (HCCI) condition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
An unstructured grid, finite volume method is presented for the solution of two-dimensional viscous, incompressible flow. The method is based on the pressure-correction concept implemented on a semi-staggered grid. The computational procedure can handle cells of arbitrary shape, although solutions presented herein have been obtained only with meshes of triangular and quadrilateral cells. The discretization of the momentum equations is effected on dual cells surrounding the vertices of primary cells, while the pressure-correction equation applies to the primary-cell centroids and represents the conservation of mass across the primary cells. A special interpolation scheme s used to suppress pressure and velocity oscillations in cases where the semi-staggered arrangement does not ensure a sufficiently strong coupling between pressure and velocity to avoid such oscillations. Computational results presented for several viscous flows are shown to be in good agreement with analytical and experimental data reported in the open literature.  相似文献   

10.
In this paper, we report our development of an implicit hybrid flow solver for the incompressible Navier–Stokes equations. The methodology is based on the pressure correction or projection method. A fractional step approach is used to obtain an intermediate velocity field by solving the original momentum equations with the matrix‐free implicit cell‐centred finite volume method. The Poisson equation derived from the fractional step approach is solved by the node‐based Galerkin finite element method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centres and the auxiliary variable at cell vertices, making the current solver a staggered‐mesh scheme. Numerical examples demonstrate the performance of the resulting hybrid scheme, such as the correct temporal convergence rates for both velocity and pressure, absence of unphysical pressure boundary layer, good convergence in steady‐state simulations and capability in predicting accurate drag, lift and Strouhal number in the flow around a circular cylinder. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Numerical results are presented for an oscillating viscous flow past a square cylinder with square and rounded corners and a diamond cylinder with square corners at Keulegan–Carpenter numbers up to 5. This unsteady flow problem is formulated by the two-dimensional Navier–Stokes equations in vorticity and stream-function form on body-fitted coordinates and solved by a finite-difference method. Second-order Adams-Bashforth and central-difference schemes are used to discretize the vorticity transport equation while a third-order upwinding scheme is incorporated to represent the nonlinear convective terms. Since the vorticity distribution has a mathematical singularity at a sharp corner and since the force coefficients are found in experiments to be sensitive to the corner radius of rectangular cylinders, a grid-generation technique is applied to provide an efficient mesh system for this complex flow. Local grid concentration near the sharp corners, instead of any artificial treatment of the sharp corners being introduced, is used in order to obtain high numerical resolution. The elliptic partial differential equation for stream function and vorticity in the transformed plane is solved by a multigrid iteration method. For an oscillating flow past a rectangular cylinder, vortex detachment occurs at irregular high frequency modes at KC numbers larger than 3 for a square cylinder, larger than 1 for a diamond cylinder and larger than 3 for a square cylinder with rounded corners. The calculated drag and inertia coefficients are in very good agreement with the experimental data. The calculated vortex patterns are used to explain some of the force coefficient behavior.  相似文献   

12.
An incompressible Navier–Stokes solver using curvilinear body‐fitted collocated grid has been developed to solve unconfined flow past arbitrary two‐dimensional body geometries. In this solver, the full Navier–Stokes equations have been solved numerically in the physical plane itself without using any transformation to the computational plane. For the proper coupling of pressure and velocity field on collocated grid, a new scheme, designated ‘consistent flux reconstruction’ (CFR) scheme, has been developed. In this scheme, the cell face centre velocities are obtained explicitly by solving the momentum equations at the centre of the cell faces. The velocities at the cell centres are also updated explicitly by solving the momentum equations at the cell centres. By resorting to such a fully explicit treatment considerable simplification has been achieved compared to earlier approaches. In the present investigation the solver has been applied to unconfined flow past a square cylinder at zero and non‐zero incidence at low and moderate Reynolds numbers and reasonably good agreement has been obtained with results available from literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.  相似文献   

14.
In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first‐order and second‐order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth‐order Runge–Kutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two‐dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side‐by‐side. Results of these simulations were extensively compared with the previous numerical data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
朱祚金 《力学学报》2002,34(3):425-431
通过用时间分裂算法求解Navier-Stokes方程,对中等Reynolds数下靠近排列的两个交错方柱三维绕流进行了数值模拟,其中,中间速度场用四阶Adams格式计算,压力场通过结合近似因子分解方法AF1与稳定的双共轭梯度方法Bi-CGSTAB进行迭代求解.数值模拟发现当两个方柱靠得较近时,有互相吸引趋势,而且上游方柱的Strouhal数较大.方柱的交错排列方式对绕流影响明显.计算结果与实验定性吻合,而且比用MAC-AF1方法计算的结果好.  相似文献   

16.
The two-dimensional Navier-Stokes equations and the energy equation governing steady laminar incompressible flow are solved by a penalty finite-element model for flow across finite depth, five-row deep, staggered bundles of cylinders. Pitch to diameter ratios of 1·5 and 2·0 are considered for cylinders in equilateral triangular and square arrangements. Reynolds numbers studied range from 100 to 400, and a Prandtl number of 0·7 is used. Velocity vector fields, streamline patterns, vorticity, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distributions around the cylinder walls and drag coefficients are presented. The results obtained agree well with available experimental and numerical data.  相似文献   

17.
A finite volume incompressible flow solver is presented for three‐dimensional unsteady flows based on an unstructured tetrahedral mesh, with collocation of the flow variables at the cell vertices. The solver is based on the pressure‐correction method, with an explicit prediction step of the momentum equations followed by a Poisson equation for the correction step to enforce continuity. A consistent discretization of the Poisson equation was found to be essential in obtaining a solution. The correction step was solved with the biconjugate gradient stabilized (Bi‐CGSTAB) algorithm coupled with incomplete lower–upper (ILU) preconditioning. Artificial dissipation is used to prevent the formation of instabilities. Flow solutions are presented for a stalling airfoil, vortex shedding past a bridge deck and flow in model alveoli. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
亚临界雷诺数下圆柱绕流的大涡模拟   总被引:20,自引:0,他引:20  
苏铭德  康钦军 《力学学报》1999,31(1):100-105
本文应用Smagorinsky涡粘性模式和二阶精度的有限体积法对圆柱绕流的流场进行大涡模拟.求解了非正交曲线坐标系下的N-S方程,对雷诺数为100和20000的工况进行了计算.计算结果与实验及动力涡粘性模式的结果进行了比较,表明计算对于层流及高亚临界雷诺数的湍流流动是合理的  相似文献   

19.
A new upwind finite element scheme for the incompressible Navier-Stokes equations at high Reynolds number is presented. The idea of the upwind technique is based on the choice of upwind and downwind points. This scheme can approximate the convection term to third-order accuracy when these points are located at suitable positions. From the practical viewpoint of computation, the algorithm of the pressure Poisson equation procedure is adopted in the framework of the finite element method. Numerical results of flow problems in a cavity and past a circular cylinder show excellent dependence of the solutions on the Reynolds number. The influence of rounding errors causing Karman vortex shedding is also discussed in the latter problem.  相似文献   

20.
A second-order-accurate (in both time and space) formulation is developed and implemented for solution of the three-dimensional incompressible Navier–Stokes equations involving high-Reynolds-number flows past complex configurations. For stabilization, only a fourth-order-accurate artificial dissipation term in the momentum equations is used. The finite element method (FEM) with an explicit time-marching scheme based on two-fractional-step integration is used for solution of the momentum equations. The element-by-element (EBE) technique is employed for solution of the auxiliary potential function equation in order to ease the memory requirements for matrix. The cubic cavity problem, the laminar flow past a sphere at various Reynolds numbers and the flow around the fuselage of a helicopter are successfully solved. Comparison of the results with the low-order solutions indicates that the flow details are depicted clearly even with coarse grids. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号