首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractures in natural rocks have an important effect on the strength and failure behavior of rock mass, which are often evaluated in rock engineering practice. The theoretical evaluation of mechanical behavior of fractured rock mass has no satisfactory answer due to the role of confining pressure and crack geometry. Therefore, in this paper, conventional triaxial compression experiments were carried out to study the strength and failure behavior of marble samples with two pre-existing closed cracks in non-overlapping geometry. Based on the experimental results of a number of triaxial compression tests, the effect of crack coalescence on the axial supporting capacity and deformation property were investigated with different confining pressures. The results show that intact samples and flawed samples (marble with pre-existing cracks) have different deformation properties after peak stress, which change from brittleness to plasticity and ductility with the increase of confining pressure. The peak strength and failure mode are found depending not only on the geometry of flaw, but also on the confining pressure. The strength of flawed samples shows distinct non-linear behavior, which is in a better agreement with non-linear Hoek–Brown criterion than linear Mohr–Coulomb criterion. For a kind of rock that has been evaluated as a Hoek–Brown material, a new evaluation criterion is put forward by adopting optimal approximation polynomial theory, which can be used to confirm more precisely the strength parameters (cohesion and internal friction angle) of flawed samples. For intact samples, the marble leads to typical shear failure mode with a single fracture surface under different confining pressures, while for flawed samples, under uniaxial compression and a lower confining pressure (σ3 = 10 MPa), tests for coarse and medium marble (the coarse and medium refer to the grain size) exhibit three basic failure modes, i.e., tensile mode, shear mode, and mixed mode (tensile and shear). Shear mode is associated with lower strength behavior. However, under higher confining pressures (σ3 = 30 MPa), for coarse marble, the axial supporting capacity is not related to the geometry of flaw. The friction among crystal grains determines the strength behavior of coarse marble. For medium marble, the failure mode and deformation behavior are dependent on the crack coalescence in the sample. The present research provides increased understanding of the fundamental nature of rock failure under conventional triaxial compression.  相似文献   

2.
In this paper the natural frequencies and the associated mode shapes of in-plane free vibration of a single-crystal silicon ring are analyzed. It is found that the Si(1 1 1) ring is two-dimensionally isotropic in the (1 1 1) plane for elastic constants but three-dimensionally anisotropic, while the Si(1 0 0) ring is fully anisotropic. Hamilton’s principle is used to derive the equations of vibration, which is a set of partial differential equations with coefficients being periodic in polar variable. Expressing the radial and tangential displacements in sinusoidal form with non-predetermined amplitudes, and through the integration with respect to the circumferential variable, the original governing equations in partial differential form can be converted into the amplitude equations in ordinary differential form. The exact expressions for frequencies and mode shapes are obtained. It is found that for Si(1 0 0) rings the frequencies of a pair of modes, which are equal for an isotropic ring, split due to the anisotropic effect only for the second in-plane vibration mode. The phenomena of frequency splitting and degenerate modes can be proved either based on the conservation of averaged mechanical energy or by the concept of crystallographic symmetry groups. When the single-crystal silicon is replaced by the polycrystalline silicon, which is isotropic in elastic constants, the derived equations for frequencies correctly predict the vanishing of the phenomenon of frequency splitting.  相似文献   

3.
For axi-symmetrically notched tension bars [Dyson, B.F., Loveday, M.S., 1981, Creep Fracture in Nimonic 80A under Tri-axial Tensile Stressing, In: Ponter A.R.S., Hayhurst, D.R. (Eds.), Creep in Structures, Springer-Verlag, Berlin, pp. 406–421] show two types of damage propagation are shown: for low stress, failure propagates from the outside notch surface to the centre-line; and for high stress, failure propagates from the centre-line to the outside notch surface. The objectives of the paper are to: identify the physics of the processes controlling global failure modes; and, describe the global behaviour using physics-based constitutive equations.Two sets of constitutive equations are used to model the softening which takes place in tertiary creep of Nimonic 80A at 750 °C. Softening by multiplication of mobile dislocations is firstly combined, for low stress, with softening due to nucleation controlled creep constrained cavity growth; and secondly combined, for high stress, with softening due to continuum void growth. The Continuum Damage Mechanics, CDM, Finite Element Solver DAMAGE XX has been used to study notch creep fracture. Low stress notch behaviour is accurately predicted provided that the constitutive equations take account of the effect of stress level on creep ductility. High stress notch behaviour is accurately predicted from a normalized inverse cavity spacing d/2? = 6, and an initial normalized cavity radius rhi/? = 3.16 × 10?3, where 2? is the cavity spacing, and d is the grain size; however, the constants in the strain rate equation required recalibration against high stress notch data. A void nucleation mechanism is postulated for high stress behaviour which involves decohesion where slip bands intersect second phase grain boundary particles. Both equation sets accurately predict experimentally observed global failure modes.  相似文献   

4.
In this paper, interlaminar crack initiation and propagation under mode-I with static and fatigue loading of a composite material are experimentally assessed for different test temperatures. The material under study is made of a 3501-6 epoxy matrix reinforced with AS4 unidirectional carbon fibres, with a symmetric laminate configuration [0°]16/S. In the experimental programme, DCB specimens were tested under static and fatigue loading. Based on the results obtained from static tests, fatigue tests were programmed to analyse the mode-I fatigue behaviour, so the necessary number of cycles was calculated for initiation and propagation of the crack at the different temperatures. GN curves were determined under fatigue loading, N being the number of cycles at which delamination begins for a given energy release rate. GICmaxa, aN and da/dNa curves were also determined for different Gcr rates (90%, 85%, 75%, etc.) and different test temperatures: 90 °C, 50 °C, 20 °C, 0 °C, ?30 °C and ?60 °C.  相似文献   

5.
In the present work, we performed experiments, atomistic simulations, and high-resolution electron microscopy (HREM) to study the creep behaviors of the nanotwinned (nt) and nanograined (ng) copper at temperatures of 22 °C (RT), 40 °C, 50 °C, 60 °C, and 70 °C. The experimental data at various temperatures and different sustained stress levels provide sufficient information, which allows one to extract the deformation parameters reliably. The determined activation parameters and microscopic observations indicate transition of creep mechanisms with variation in stress level in the nt-Cu, i.e., from the Coble creep to the twin boundary (TB) migration and eventually to the perfect dislocation nucleation and activities. The experimental and simulation results imply that nanotwinning could be an effective approach to enhance the creep resistance of twin-free ng-Cu. The experimental creep results further verify the newly developed formula (Yang et al., 2016) that describes the time-, stress-, and temperature-dependent plastic deformation in polycrystalline copper.  相似文献   

6.
High-speed experiments were conducted to characterize the deformation and failure of Styrene Butadiene Rubber at impact rates. Dynamic tensile stress–strain curves of uniaxial strip specimens and force–extension curves of thin sheets were obtained from a Charpy tensile impact apparatus. Results from the uniaxial tension tests indicated that although the rubber became stiffer with increasing strain rates, the stress–strain curves remained virtually the same above 280 s−1. Above this critical strain rate, strength, fracture strain and toughness decreased with increasing strain rates. When strain rates were below 180 s−1, the initial modulus, tensile strength and breaking extension increased as the strain rate increased. Between strain rates of 180 and 280 s−1, the initial modulus and tensile strength increased with increasing strain rates but the extension at break decreased with increasing strain rates. A hyper-viscoelastic constitutive relation of integral form was used to describe the rate-dependent material behavior of the rubber. Two characteristic relaxation times, 5 ms and 0.25 ms, were needed to fit the proposed constitutive equation to the data. The proposed constitutive equation was implemented in ABAQUS Explicit via a user-defined subroutine and used to predict the dynamic response of the rubber sheets in the experiments. Numerical predictions for the transient deformation and failure of the rubber sheet were within 10% of experimental results.  相似文献   

7.
The effect of local texture on inhomogeneous plastic deformation is studied in zirconium subjected to uniaxial compression. Cross-rolled commercially pure Zr 702 plate that had a strong basal (0 0 0 1) texture through the plate thickness, and a non-basal texture in cross-section, was obtained. At a compressive strain rate of 1 s?1, samples loaded either in the through-thickness or in-plane directions exhibited significant differences in yield strength, hardening response and failure mechanisms. These macroscopic differences are related to microstructural features by combining information from electron backscattered diffraction with real time in situ imaging and subsequent full-field strain measurements obtained using digital image correlation. Experimental results indicate that the through-thickness loaded zirconium samples, which show a strong basal-texture in the loading direction, do not deform homogeneously – implying the lack of a representative volume element. The detailed surface deformation fields provided by digital image correlation allow for a qualitative and quantitative analysis of the relationship between grain orientation and patterns of deformation bands that form as the precursors to development of an adiabatic shear band in the through-thickness loaded sample. For the in-plane loaded samples, inhomogeneities still exist at the microscale, but the collective behavior of several grains leads to a homogeneous response at the macroscale. It is observed that local texture for hcp polycrystals, which are significantly slip restricted, can directly affect both local and global response, even at low to moderate plastic strains.  相似文献   

8.
A comprehensive study of the thermo-mechanical response of a thermoplastic polymer, nylon 101 is presented. Quasi-static and dynamic compression uniaxial and multi-axial experiments (stress states) were performed at a wide range of strain rates (10−5 to 5000 s−1) and temperatures (−60 to 177 °C or −76 to 350 °F). The material is found to be non-linearly dependent on strain rate and temperature. The change in volume after plastic deformation is investigated and is found to be negligibly small. The relaxation and creep responses at room temperature are found to be dependent on strain rate and the stress–strain level at which these phenomena are initiated. Total deformation is decomposed into visco-elastic and visco-plastic components; these components have been determined at different levels of deformation. Results from non-proportional uniaxial to biaxial compression, and torsion experiments, are also reported for three different strain rates at room temperature. It is shown that nylon 101 has a response dependent on the hydrostatic pressure.  相似文献   

9.
In part I of this study it was shown that, to model synthetic fiber ropes, two scale transition models can be used in sequence. The first model (continuum model) has been presented in the part I and the present paper examines the behavior of a fibrous structure consisting of 6 helicoidal strands around a central core (1 + 6 structure). An analytical model will be presented which enables the global elastic behavior of such a cable under tension–torsion loading to be predicted. In this model, first, the core and the strands are described as Kirchhoff–Love beams and then the traction–torsion coupling behavior is taken into account for both of them. By modeling the contact conditions between the strands and the core, with certain assumptions, it is possible to describe the behavior of the cable section as a function of the degrees of freedom of the core. The behavior of the cable can thus be deduced from the tension–torsion coupling behavior of its constituents. Tensile tests have been performed on the core, the strands and then on a full scale 205 ton failure load cable. Finally, predicted stiffness from the analytical models is compared to the test results.  相似文献   

10.
Dynamic response of a cellular sandwich core material, balsa wood, is investigated over its entire density spectrum ranging from 55 to 380 kg/m3. Specimens were compression loaded along the grain direction at a nominal strain rate of 3 × 103 s−1 using a modified Kolsky (split Hopkinson) bar. The dynamic data are discussed and compared to those of quasi-static experiments reported in a previous study (Mech. Mater. 35 (2003) 523). Results show that while the initial failure stress is very sensitive to the rate of loading, plateau (crushing) stress remains unaffected by the strain rate. As in quasi-static loading, buckling and kink band formation were identified to be two major failure modes in dynamic loading as well. However, the degree of dynamic strength enhancement was observed to be different for these two distinct modes. Kinematics of deformation of the observed failure modes and associated micro-inertial effects are modeled to explain this different behavior. Specific energy dissipation capacity of balsa wood was computed and is found to be comparable with those of fiber-reinforced polymer composites.  相似文献   

11.
Previous experiments have shown that the distinct features of macro-martensitic band nucleation and propagation in micro-tube under tension are in three stages: the initiation and propagation of a single helical band  self-merging  propagation of the cylindrical band. In this paper, the martensitic formation and helical band propagation in the tube at different temperatures are modeled. The free energy function of the tube is formulated by introducing an equivalent method to calculate the stress and strain disturbances in the helical martensitic domain, and the phase transformation criterion is derived based on thermodynamics. The simulations successfully capture the main features of nucleation, pattern evolution and variation of front velocity of the helical martensitic band in the tube. The analytical results and the comparison with experiments are also discussed in this paper.  相似文献   

12.
The experiments were conducted in 54.9 mm diameter horizontal pipe on two sizes of glass beads of which mean diameter and geometric standard deviation are 440 μm & 1.2 and 125 μm & 1.15, respectively, and a mixture of the two sizes in equal fraction by mass. Flow velocity was up to 5 m/s and overall concentration up to 50% by volume for each velocity. Pressure drop and concentration profiles were measured. The profiles were obtained traversing isokinetic sampling probes in the horizontal, 45° inclined and vertical planes including the pipe axis. Slurry samples of the mixture collected in the vertical plane were analyzed for concentration profiles of each particle batch constituting the mixture. It was found that the pressure drop is decreased for the mixture at high concentrations except 5 m/s and a distinct change of concentration profiles was observed for 440 μm particles indicating a sliding bed regime, while the profiles in the horizontal plane remains almost constant irrespective of flow velocity, overall concentration and slurry type.  相似文献   

13.
The objective of this paper is to examine the instability characteristics of both a bulk FCC crystal and a (1 0 0) surface of an FCC crystal under uniaxial stretching along a 〈1 0 0〉 direction using an atomistic-based nonlocal instability criterion. By comparison to benchmark atomistic simulations, we demonstrate that for both the FCC bulk and (1 0 0) surface, about 5000–10,000 atoms are required in order to obtain an accurate converged value for the instability strain and a converged instability mode. The instability modes are fundamentally different at the surface as compared to the bulk, but in both cases a strong dependence of the instability mode on the number of atoms that are allowed to participate in the instability process is observed. In addition, the nonlocal instability criterion enables us to determine the total number of atoms, and thus the total volume occupied by these atoms, that participate in the defect nucleation process for both cases. We find that this defect participation volume converges as the number of atoms increases for both the bulk and surface, and that the defect participation volume of the surface is smaller than that of the bulk. Overall, the present results demonstrate both the necessity and utility of nonlocal instability criteria in predicting instability and subsequent failure of both bulk and surface-dominated nanomaterials.  相似文献   

14.
This paper presents and analyzes the behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles. The relevance of this material resides in the potential transformation of retained austenite to martensite during impact loading. This process leads to an increase in strength and ductility of the material. However, this transformation takes place only under certain loading conditions strongly dependent on the initial temperature and deformation rate. In order to study the material behaviour under impact loading, perforation tests have been performed using a drop weight tower. Experiments were carried out at two different initial temperatures T0 = 213 K and T0 = 288 K, and within the range of impact velocities 2.5 m/s ? V0 ? 4.5 m/s. The experimental setup enabled the measuring of impact velocity, residual velocity, load-time history and failure mode. In addition, dry and lubricated contacts between the striker and the plate have been investigated. Finally, by using X-ray diffraction it has been shown that no martensitic transformation takes place during the perforation process. The causes involving the none-appearance of martensite are examined.  相似文献   

15.
Crack propagation and coalescence processes are the fundamental mechanisms leading to progressive failure processes in rock masses, in which parallel non-persistent rock joints are commonly involved. The coalescence behavior of the latter, which are represented as pre-existing coplanar flaws (cracks), is numerically investigated in the present study. By using AUTODYN as the numerical tool, the present study systematically simulates the coalescence of two pre-existing coplanar flaws in rock under compression. The cumulative damage failure criterion is adopted in the numerical models to simulate the cumulative damage process in the crack initiation and propagation. The crack types (shear or tensile) are identified by analyzing the mechanics information associated with the crack initiation and propagation processes. The simulation results, which are generally in a good accordance with physical experimental results, indicate that the ligament length and the flaw inclination angle have a great influence on the coalescence pattern. The coalescence pattern is relatively simple for the flaw arrangements with a short ligament length, which becomes more complicated for those with a long ligament length. The coalescence trajectory is composed of shear cracks only when the flaw inclination angle is small (such as β ? 30°). When the pre-existing flaws are steep (such as β ? 75°), the coalescence trajectory is composed of tensile cracks as well as shear cracks. When the inclination angle is close to the failure angle of the corresponding intact rock material, and the ligament length is not long (such as L ? 2a), the direct shear coalescence is the more favorable coalescence pattern. In the special case that the two pre-existing flaws are vertical, the model will have a direct tensile coalescence pattern when the ligament length is short (L ? a), while the coalescence between the two inner flaw tips is not easy to achieve if the ligament length is long (L ? 2a).  相似文献   

16.
In this work, the elastic properties of directionally solidified (DS) polycrystal aggregates are investigated through a combination of analytical and numerical approaches. The effects of crystallographic misorientations and grain aspect ratios of aggregates with ellipsoidal shaped grains are first examined following a self-consistent approach. Finite element techniques are then used to examine the effects of grain size on the elastic properties of the aggregate and to assess the accuracy of the self-consistent predictions. To that purpose, a finite element procedure is presented to generate numerically realistic 3D DS microstructures from electron back-scatter diffraction (EBSD) lattice orientation measurements on an arbitrary cross-section of a DS material. The elastic stiffnesses predicted numerically and analytically are then compared with experimental data on a Ni-base DS alloy tested uniaxially along arbitrary orientations. The general trend predicted analytically was found to be consistent with the numerical and experimental results. Furthermore, an increase in the misorientation between the [0 0 1] axis of each DS grain with respect to the grain growth direction was found to decrease the elastic anisotropy of the DS material.  相似文献   

17.
This paper describes buckling modes and stresses of elastic Kelvin open-cell foams subjected to [0 0 1], [0 1 1] and [1 1 1] uniaxial compressions. Cubic unit cells and cell aggregates in model foams are analyzed using a homogenization theory of the updated Lagrangian type. The analysis is performed on the assumption that the struts in foams have a non-uniform distribution of cross-sectional areas as observed experimentally. The relative density is changed to range from 0.005 to 0.05. It is thus found that long wavelength buckling and macroscopic instability primarily occur under [0 0 1] and [0 1 1] compressions, with only short wavelength buckling under [1 1 1] compression. The primary buckling stresses under the three compressions are fairly close to one another and almost satisfy the Gibson–Ashby relation established to fit experiments. By also performing the analysis based on the uniformity of strut cross-sectional areas, it is shown that the non-uniformity of cross-sectional areas is an important factor for the buckling behavior of open-cell foams.  相似文献   

18.
A damage-based cohesive model is developed for simulating crack growth due to fatigue loading. The cohesive model follows a linear damage-dependent traction–separation relation coupled with a damage evolution equation. The rate of damage evolution is characterized by three material parameters corresponding to common features of fatigue behavior captured by the model, namely, damage accumulation, crack retardation and stress threshold. Good agreement is obtained between finite element solutions using the model and fatigue test results for an aluminum alloy under different load ratios and for the overload effect on ductile 316 L steel.  相似文献   

19.
A rigorous reformulation of internal entropy production and the rate of entropy flow is developed for multi-component systems consisting of heterophases, interfaces and/or surfaces. The result is a well-posed moving boundary value problem describing the dynamics of curved interfaces and surfaces associated with voids and/or cracks that are intersected by grain boundaries. Extensive computer simulations are performed for void configuration evolution during intergranular motion. In particular we simulate evolution resulting from the action of capillary and electromigration forces in thin film metallic interconnects having a “bamboo” structure, characterized by grain boundaries aligned perpendicular to the free surface of the metallic film interconnects. Analysis of experimental data utilizing previously derived mean time to failure formulas gives consistent values for interface diffusion coefficients and enthalpies of voids. 3.0 × 10−6 exp(−0.62 eV/kT) m2 s−1 is the value obtained for voids that form in the interior of the aluminum interconnects without surface contamination. 6.5 × 10−6 exp(−0.84 eV/kT) m2 s−1 is obtained for those voids that nucleate either at triple junctions or at the grain boundary-technical surface intersections, where the chemical impurities may act as trap centers for hopping vacancies.  相似文献   

20.
We study the initiation and propagation of adiabatic shear bands (ASBs) in 11 homogeneous materials each modeled as microporous, isotropic and thermoelastoviscoplastic, and deformed in plane strain tension. The heat conduction in each material is assumed to be governed by a hyperbolic heat equation; thus thermal and mechanical waves propagate with finite speeds. The decrease in the thermophysical parameters due to the increase in porosity is considered. An ASB is assumed to initiate at a material point when the maximum shear stress there has dropped to 80% of its peak value for that material point and it is deforming plastically. An approximate solution of the coupled nonlinear partial differential equations subject to suitable initial and boundary conditions is found by the finite element method (FEM). In contrast to the Considerè and the Hart criterion, it is found that an ASB initiates when the axial load drops rapidly and not when it peaks. The refinement of the 40 × 40 uniform FE mesh to 120 × 120 uniform elements decreased the ASB initiation time by 2.1% while increasing the CPU time by a factor of ∼26. By locating points where the ASB has initiated we find its current length, width and speed. The 11 materials are ranked according to the time of initiation of an ASB under otherwise identical geometric and loading conditions with the same initial nonuniform porosity distribution. This ranking of materials is found to differ somewhat from that ascertained by Batra and Kim (1992) who studied simple shearing deformations, and by Batra et al. (1995) who analyzed three-dimensional torsional deformations of thin-walled tubular specimens. The average axial strain determined from the maximum axial load condition differs noticeably from that when an ASB initiates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号